Artropodo

Gorputz metamerizatua eta kitinazko exoeskeletoa duen animalia. Hanka giltzatuak, hemozelea, burua, eta, batzuetan, teltsona ere izaten dituzte.

Artropodoak (antzinako grezieraz: ἄρθρονarthron, "artikulazio" eta πούς, podos, "hanka") exoeskeleto bat, gorputz segmentatua eta apendize bikoitiak dituzten animalia ornogabeak dira. Artropodoek Euarthropoda filuma osatzen dute[1][2], eta euren barruan intsektuak, araknidoak, miriapodoak eta krustazeoak daude, besteak beste. Hasiera batean Arthropoda terminoa Euartropodoak eta onikoforoak izendatzeko erabili zen. Artropodoen ezaugarririk nabarmenena artikulatutako adarrak eta kitinaz osatutako kutikulak dira, batzuetan kaltzio karbonatoan mineralizatzen direnak. Artropodoen gorputz-planak segmentuak ditu, horietako bakoitza apendize pare batekin. Kutikula zurrunak hazkuntza gelditzen du, beraz artropodoek mudak egiten dituzte erregularki. Simetria bilaterala dute, eta gorputzak kanpo eskeletoa du. Espezie batzuek hegalak dituzte.

Artropodo
Arthropoda.jpg
Sailkapen zientifikoa
GoierreinuaEukaryota
ErreinuaAnimalia
AzpierreinuaBilateria
GoifilumaEcdysozoa
Filuma Arthropoda
Latreille, 1829

Bere aldakortasunari esker, elkarketa-ekologiko guztietako espezierik ohikoenak bihurtu dira ingurune gehienetan. Gutxi gorabehera milioi bat espezie deskribatu dira, eta animalia espezie guztien %80 baino gehiago dira. Horietako batzuk, beste animalia gehienek ez bezala, giro lehorrean arrakasta handia dute. Artropodoak neurriz aldatzen dira Stygotantulus krustazeo mikroskopikotik Japoniako Macrocheira kaempferi karramarro erraldoiraino.

Artropodoen barne kabitate nagusia hemozeloa da, bere barne-organoak biltzen dituena; bertatik, odolaren analogoa den hemolinfak zirkulatzen du. Euren zirkulazio-sistema irekia da. Kanpoko egituran gertatzen den bezala, artropodoen barne organoak ere errepikapen bidez eratu ohi dira. Euren nerbio-sistema eskailera baten antzekoa da, nerbio-korda bentralen bikoteekin segmentu guztietan, ganglio parea sortuz segmentu bakoitzean. Burua segmentu kopuru ezberdinen fusio bidez osatzen dira, eta euren garuna ganglio horietako batzuen batuketatik osatzen da, esofagoaren inguruan. Arnasketa-sistema eta iraizketa-sistemak aldakorrak dira artropodo ezberdinetan, batez ere euren ingurunearen eta osatzen dute subfilumaren araberakoa. Ikusmena begi-konposatu eta begi-sinpleen konbinazio batekin eman ohi da: espezie gehienetan ocelliek argia nondik datorren zehaztu dezakete, eta begi-konposatuak dira informazio iturririk nagusiena, baina armiarmen begi nagusiak ocelli sinpleak dira. Artropodoek sentsore kimiko eta mekaniko kopuru handia dute, gehienak euren septuen modifikazio bidez lortuak. Artropodoen ugalketa anitza da; espezie lurtar guztiek barne ernalketa dute, baina gehienetan lurrera botatzen diren espermatozoideak apendize batekin hartuz lortzen da, sarketa bidez izan beharrean.

Artropodoen arbaso ebolutiboa Kanbriar garaikoa da. Taldea monofiletikoa dela uste da, eta ikerketa askok proposatzen dute artropodoak eta Cycloneuralia (edo bere barneko kladoak) Ecdysozoa superfilumean sailkatu beharko liratekeela. Orokorrean, hala ere, Metazoaren oinarrizko harremanak zeintzuk diren ez da ondo ebaztu, momentuz. Artropodoen barne taldeen arteko harremanak ere eztabaidagarriak dira oraindik ere. Espezie urtarrek barne zein kanpo ernalketa erabiltzen dute. Artropodo gehienek arrautzak uzten dituzte, baina eskorpioek amaren barruan hazi diren kumeak erditzen dituzte. Artropodo kumeen egitura oso ezberdina izan daiteke, batzuk helduen bertsio txikiak dira, biana beste batzuek metamorfosi osoa izaten dute kume itxuratik heldu itxurara. Eskorpioak kumeengatik kezkatzen diren bitartean, beste espezie askotan ez dago inongo ardurarik hurrengo belaunaldiarekiko.

Artropodoak oso garrantzitsuak dira gizakien elikadurarako, zuzenean elikagai gisa edo jaten diren fruituen polinizazioa eginez. Espezie batzuek gaixotasunak hedatzen dituzte, gizaki, etxabere edo nekazaritza-produktuetan.

EtimologiaAldatu

Artropodo hitza grezierazko ἄρθρον árthron, "artikulazio", eta πούς pous, "hanka" hitzen elkarketatik datur, hau da, "hanka artikulatu". 1848an Karl Theodor Ernst von Siebold alemaniar fisiologo eta zoologoak sortu zuen hitza[3][4].

DeskribapenaAldatu

Artropodoen gorputz segmentatua dute eta segmentu bakoitzak adarrak ditu[5]. Bihotza alde dortsalean (goikaldean) dute eta nerbio-sistema bentralean (behekaldean). Artropodo guztiek exoeskeleto bat dute euren gorputza. Exoeskeleto hau kitinaz osatua dago, glukosaminazko polimero bat[6]. Artropodoek, noizbehinka, euren exoeskeletoa apurtu, atera eta handiagoa den beste bat eraikitzen dute. Sistema honek artropodoei lehortzea eragozten die, baina baita gehiegi hazten ere.

DibertsitateaAldatu

Artropodo espezie kopuruaren estimazioak oso aldakorrak dira; txikienak dio 1.170.000 espezie inguru direla, baina badira 5 edo 10 milioi direla dioten ikerketak ere, espezie bizidun guztien %80 inguru[7][8]. Espezie kopuru zehatza zein den kalkulu zaila da. Izan re, mundu mailan erabiltzen diren zentsu-sistemak ezberdinak dira, eta batzuetan leku zehatz batean egiten diren kontaketak mundu osorako baliagarritzat hartzen dira. 1992an egindako ikerketa batek zioen bakarrik Costa Rican 500.000 animalia eta landare espezie zeudela, horietatik 365.000 artropodoak[9].

Itsasoan, ur gezan, lehorrean eta aireko ekosistematan kide garrantzitsuak dira, eta ingurune lehorrera adaptatu diren bi animalia talde handietako bat da; bestea Amniota da, narrastiak, hegaztiak eta ugaztunak batzen dituen taldea[10]. Artropodoen barneko azpi-talde bakar bat, intsektuak, lehorreko eta ur-gezako ingurune guztietan espezie gehien dituena da. Intsekturik arinenak 25 mikrogramo pisatzen ditu[11], pisutsuenak 70 gramo dituen bitartean[12]. Krustazeo batzuk handiagoak dira; adibidez, Japoniako karramarro erraldoiak 4 metroko hankak izan ditzake, eta Homarus americanusak 20 kilogramoko pisua izan dezake.

SegmentazioaAldatu

Artropodo guztien enbrioiak segmentatuta daude, modulu errepikatuetan oinarrituta. Artropodo bizien azken arbaso komuna, ziuraski, bereizi gabeko segmentu batzuk izan zituen, bakoitza gorputz adar bezala funtzionatzen zuten gorputz-adar pare batekin. Hala ere, ezagutzen diren artropodo bizi eta fosil guztiek, segmentuak tagmatan bildu dituzte, non segmentuak eta euren gorputz-adarrak modu ezberdinetan espezializatzen diren[10].

Intsektuen gorputz asko hiru zatitan agertzea eta armiarmak bi zatitan agertzea da multzokatze honen emaitza; izan ere, akaroen segmentazioaren kanpoko zantzurik ez dago[10]. Artropodoek ere, seriean errepikatutako segmentu patroi honen zati ez diren bi gorputz elementu dituzte, protomio bat aurrealdean, ahoaren aurrean, eta telson bat atzealdean, uzkiaren atzean. Begiak protomioaren gainean daude[10].

Jatorrian, dirudienez, segmentu bakoitzak bi gorputz-adar pare zituen: goiko pare bat eta beheko pare bat. Hauek, beranduago, birramio gorputz-adar pare bakar batean fusionatuko ziren, goiko adarrak brankia bezala jokatzen zuten, beheko adarra lokomoziorako erabiltzen ziren bitartean[13]. Ezagutzen diren artropodo guztien segmentu batzuetan, eranskinak aldatu egin dira, adibidez, brankiak, ahoko piezak, informazioa biltzeko antenak edo heltzeko atzaparrak sortzeko[14][15]; artropodoak "Suitzako armadaren labanak bezalakoak dira, bakoitza erreminta espezializatu multzo bakar batekin hornitua"[10]. Artropodo askotan, eranskinak gorputzeko zenbait eskualdetatik desagertu dira; bereziki ohikoa da abdomeneko gehigarriak desagertu izana edo oso aldatuta egotea[10].

Segmentuen espezializaziorik berezienak buruan daude. Lau artropodo talde nagusiek -kelizeratuak (armiarmak eta eskorpioiak barne), krustazeoak (izkirak, otarrainak, karramarroak, etab.), trakeatuak (beren gorputzetan kanalen bidez arnasten duten artropodoak, intsektuak eta miriapodoak barne) eta trilobite desagertuek segmentu konbinazio ezberdinez osatutako buruak dituzte[10]. Gainera, desagertutako artropodo batzuk, Marrella kasu, ez dira talde hauetako bakar batekoak, euren buruak, euren segmentu eta gehigarri espezializatuen konbinazio bereziez osatuta baitaude[16].

Konbinazio ezberdin hauek guztiak agertu ahal izateko eboluzio-etapak zehaztea hain da zaila, non aspalditik ezagutzen den "artropodoen buruaren arazoa" bezala[17]. 1960an, R. E. Snodgrassek ez konpontzea ere espero zuen, dibertigarria iruditzen baitzitzaion konponbideak aurkitzen lan egitea[18].

ExoeskeletoaAldatu

Artropodoen exoeskeletoak kutikulaz eginak daude, epidermisak sekretatutako material ez zelularra[10]. Kutikulak egituraren xehetasunetan aldatzen dira, baina, orokorrean, hiru geruza nagusitan oinarritzen dira: epikutikula, beste geruzak iragazgaiztu eta nolabaiteko babesa ematen dien kanpoko geruza argizari itxurazko fin bat, exokutikula, kimikoki gogortuak diren kitina eta proteinaz osatua, eta endokutikula, gogortu gabeko kitina eta proteinaz osatua. Exokutikula eta endokutikula elkarrekin, prokutikula bezala ezagutzen dira[19]. Gorputzaren segmentu bakoitza eta gorputz-adarren sekzio bakoitza kutikula gogortu batean kapsulatuta dago. Gorputzaren segmentuen eta gorputz-adarren sekzioen arteko artikulazioak kutikula malgu batez estalita daude[10].

Ur-krustazeo gehienen exoeskeletoak uretatik ateratako kaltzio karbonatoarekin biomineralizatuta daude. Lurreko krustazeo batzuek minerala biltegiratzeko bitartekoak garatu dituzte, izan ere, lehorrean ezin dira disolbatutako kaltzio karbonato hornidura konstante baten menpe egon[20]. Biomineralizazioak, oro har, exokutikulari eta endokutikularen kanpoko aldeari eragiten die[19]. Artropodo eta beste animalia talde batzuetako biomineralizazioaren eboluzioari buruzko bi hipotesi berrik, defentsa-armadura erresistenteago bat ematen duela proposatzen dute[21], eta animaliei, hezurdura zurrunagoak ematen dizkietenez, handiagoak eta indartsuagoak haztea ahalbidetzen diela[22]; eta, edozein kasutan, exoeskeleto konposatu mineral-organiko bat merkeagoa da eraikitzeko, erabat organikoa den indar konparagarriko bat baino[23][22].

Kutikulak, epidermisean zelula berezietatik hazten diren zurdak (ile gogorrak) izan ditzake. Zurdak eranskinak bezain askotarikoak dira formari eta funtzioari dagokienez. Adibidez, askotan sentsore gisa erabiltzen dira aire- edo ur-korronteak detektatzeko, edo objektuekiko kontaktua detektatzeko; uretako artropodoek lumaren antzeko zurdak erabiltzen dute igeriketako apendizeen azalera handitzeko eta uretako elikagaien partikulak iragazteko; uretako intsektuek, airea arnasten dutenek, feltroaren antzeko zurda-geruza lodiak erabiltzen dituzte airea harrapatzeko, igaro dezaketen denbora luzatuz[10].

Artropodo guztiek exoeskeletoaren barnealdeari lotutako giharrak erabiltzen dituzten arren, batzuk oraindik presio hidraulikoa erabiltzen dute euren gorputz-adarrak tolesteko, euren arbaso aurre-artropodoengandik jasotako sistema bat[24]; adibidez, armiarma guztiek euren hankak modu hidraulikoan hedatzen dituzte eta euren atseden maila baino zortzi aldiz presio handiagoak sor ditzakete[25].

MudaAldatu

Exoeskeletoa ezin da luzatu eta, beraz, hazkundea murrizten du. Beraz, artropodoek euren exoeskeletoak ordezkatzen dituzte ekdisien (muda) bidez, edo exoeskeleto zaharretik askatuz, oraindik gogortu gabe dagoen berri bat garatu ondoren. Muda zikloak ia etengabe garatzen dira artropodo batek bere tamaina osoa lortu arte[10].

Muda bakoitzaren arteko garapen-etapei, heldutasun sexuala lortu arte, instar edo estadio esaten zaie. Estadioen arteko aldeak, sarri, gorputzaren proportzioen aldaketan ikus daitezke, koloreak, patroiak, gorputzaren segmentu kopuruaren aldaketak edo buruaren zabalera. Mutaren ondoren, hau da, exoeskeletoa galdu ondoren, artropodo gazteek beren bizi-zikloan jarraitzen dute, pupa bihurtu edo berriz ere aldatu arte.

Mutaren hasierako fasean, animaliak elikatzeari uzten dio, eta bere epidermisak mutaren likidoa askatzen du, endokutikula leuntzen duen entzima nahasketa bat, eta, horrela, kutikula zaharra askatzen du. Fase hau epidermisak epikutikula berri bat sortu duenean hasten da, entzimetatik babesteko, eta epidermisak exokutikula berria, kutikula zaharra askatzen ari den bitartean. Etapa hau amaitzen denean, animaliak, bere gorputza, ur edo aire kopuru handi bat hartuz puztea eragiten du, eta, honen ondorioz, kutikula zaharra aurretik definitutako ahulezietan banatzen da, exokutikula zaharra meheagoa den lekuetatik. Normalean minutu batzuk hartzen ditu animaliak kutikula zaharretik ateratzeko. Puntu honetan, berria zimurtuta dago eta hain da leuna, animaliak ezin duela bere kabuz eutsi eta oso zaila egiten zaiola mugitzea, eta endokutikula berria oraindik ez da sortu. Animaliak bere burua ponpatzen jarraitzen du kutikula berria ahalik eta gehien luzatzeko, gero exokutikula berria gogortzen du eta gehiegizko airea edo ura ezabatzen du. Fase honen amaieran, endokultura berria sortu da. Artropodo askok, baztertutako kutikula jaten dute euren materialak erreklamatzeko[10].

Artropodoak babesik gabe eta ia ibilgetuta daudenez kutikula berria gogortu arte, arriskuan daude, bai kutikula zaharrean harrapatuta geratzeko, bai harrapariek erasotzeko. Muda izan daiteke artropodoen heriotza guztien %80tik %90era[10].

Barne organoakAldatu

Artropodoen gorputzak ere barnean segmentatuta daude, eta nerbio-sistemak, muskulu-sistemak, zirkulazio-sistemak eta iraitz-sistemak osagai errepikatuak dituzte. Artropodoak, zeloma duten animalia leinu batetik datoz, hesteen eta barne organoak gordetzen dituen gorputzeko hormaren artean mintz batez estalita dagoen barrunbe bat. Artropodoen gorputz-adar sendo eta segmentatuek zelomaren antzinako funtzio nagusietako baten beharra ezabatzen dute, hezurdura hidrostatiko bat bezala, muskuluek konprimitu egiten dutena animaliaren forma aldatzeko eta, horrela, mugitzea ahalbidetzeko. Beraz, artropodoaren zeloma ugalketa- eta iraizketa-sistemen inguruko eremu txikietara mugatzen da. Bere tokia, zati handi batean, hemozeloak hartzen du, gorputzaren luzeraren zatirik handiena zeharkatzen duen barrunbe bat, bertatik hemolinfa (odola) isurtzen delarik[10].

Arnasketa eta zirkulazioaAldatu

Sakontzeko, irakurri: «Hemolinfa»

Artropodoek zirkulazio-sistema irekiak dituzte, baina gehienek arteria labur eta ireki gutxi batzuk dituzte. Kelizeratu eta krustazeoetan, hemolinfa izeneko odolak oxigenoa eramaten du ehunetara, hexapodoek, trakea sistema bereizi bat erabiltzen duten bitartean. Krustazeo askok, baina kelizero eta trakeitiko gutxik, arnas pigmentuak erabiltzen dituzte oxigenoa garraiatzen laguntzeko. Arnas pigmenturik ohikoena, artropodoetan, kobrezko hemozianina da, krustazeo askok eta zentipedo gutxi batzuek erabiltzen dutena. Krustazeo eta intsektu batzuek burdinan oinarritutako hemoglobina erabiltzen dute, ornodunek erabiltzen duten arnas pigmentua. Beste ornogabe batzuen kasuan bezala, hauek dituzten artropodoen arnas pigmentuak, eskuarki, odolean disolbatzen dira, eta, gutxitan, ornodunetan bezala, korpuskuluetan ixten dira[10].

Bihotza, ohi, bizkarraren azpian eta hemozeloaren luzera gehienean korrika doan hodi muskular bat da. Atzeraka doazen uhinetan uzkurtzen da, odola aurrerantz bultzatuz. Bihotzeko muskuluak estutzen ez dituen sekzioak lokailu elastikoek edo muskulu txikiek hedatzen dituzte, edozein kasutan, bihotza gorputzaren hormara konektatuz. Bihotzean zehar, parekatutako ostia batzuk funtzionatzen dute, itzulerarik gabeko balbulak, odola bihotzean sartzea ahalbidetzen dutenak, baina aurrera iritsi baino lehen irtetea eragozten dutenak[10].

Artropodoek arnas sistema oso ezberdinak dituzte. Espezie txikiek sarritan ez dute bat ere izaten, bolumenaren araberako azaleraren proportzio handiak gorputzaren azaleran zehar hedatzea ahalbidetzen baitu oxigeno nahikoa hornitzeko. Krustazeoek, aldatutako eranskinak diren brankiak izaten dituzte. Araknido askok liburu birikak dituzte[26]. Trakeek, gorputzeko hormetako irekiduretatik korritzen diren adarkatutako tunel sistemek, oxigenoa, zuzenean, zelula indibidualetara eramaten dute intsektu, miriapodo eta araknido askotan[10].

Nerbio-sistemaAldatu

Artropodo biziek euren gorputzetan zehar hestearen azpitik korritzen duten nerbio-korda nagusiak parea dituzte, eta segmentu bakoitzeko kordek gongoil pare bat osatzen dute, nondik nerbio sentsorialak eta nerbio motorrak segmentuaren beste alde batzuetara doazen. Segmentu bakoitzeko gongoil pareak fisikoki fusionatuak diruditen arren, ertzez lotuta daude (nerbio sorta handi samarrak), artropodoen nerbio sistemei "eskailera" itxura bereizgarria ematen dietenak. Burmuina buruan dago, bera inguratzen, hestegorriaren gainetik. Akroiaren gongoil fusionatuek eta burua osatzen duten segmentu nagusietako batek edo bik osatzen dute burmuina. Guztira hiru gongoil pare daude artropodo gehienetan, baina soilik bi kelizeratuetan, ez baitute ez antenarik ez ganglioa haiei konektaturik. Buruko beste segmentu batzuen gongoilak, sarritan, garunetik gertu daude, eta garunaren zati bezala funtzionatzen dute. Intsektuetan, buruko beste gongoil horiek gongoil subesofagiko pare batean konbinatzen dira, hestegorriaren azpian eta atzean. Armiarmek urrats bat harago daramate prozesu hau, gongoil segmentario guztiak gongoil subesofagikoei gehitzen baitzaizkie, zefalotoraxeko espazio gehiena hartzen dutenak (aurrez aurreko "supersegmentua")[10].

Iraizketa-sistemaAldatu

Artropodoek bi iraizketa-sistema mota dituzte. Uretako artropodoetan, nitrogenoa metabolizatzen duten erreakzio biokimikoen azken produktua amoniakoa da, hain toxikoa non urarekin ahalik eta gehien diluitu behar baita. Amoniakoa, orduan, edozein mintz iragazkorren bidez ezabatzen da, batez ere brankien bidez[27]. Krustazeo guztiek erabiltzen dute sistema hori, eta ur asko kontsumitzen dute krustazeoek lehorreko animalia gisa arrakasta gutxi dutelako. Lurreko hainbat artropodo multzok sistema ezberdin bat garatu dute modu independentean: nitrogenoaren metabolismoaren azken produktua azido urikoa da, material lehor gisa iraitzi daitekeena; Malpighiren tutu-sistemak azido urikoa eta odolaren beste hondakin nitrogenatu batzuk iragazten ditu hemozeloan, eta material horiek hestera isurtzen ditu, eta hortik gorotz gisa botatzen dira. Uretako artropodo gehienek eta lehorreko zenbait artropodok ere nefridio ("giltzurrun txikiak") izeneko organoak dituzte, beste hondakin batzuk ateratzen dituztenak txiza bezala iraizteko[10].

ZentzumenakAldatu

IkusmenaAldatu

Ugalketa eta garapenaAldatu

Historia ebolutiboaAldatu

Azken arbaso komunaAldatu

Erregistro fosilaAldatu

Zuhaitz ebolutiboaAldatu

SailkapenaAldatu

Gaur egun honako sailkapen hau proposatzen da artropodoentzat:

Phylum Arthropoda

Autore batzuek Myriapoda eta Hexapoda talde berdinean sartzen dute, Uniramia izeneko azpiphylumean, hain zuzen ere.

Gizakiak eta artropodoakAldatu

ErreferentziakAldatu

  1. (Ingelesez) Ortega‐Hernández, Javier. (2016). «Making sense of ‘lower’ and ‘upper’ stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848» Biological Reviews (1): 255–273 doi:10.1111/brv.12168 ISSN 1469-185X . Noiz kontsultatua: 2019-04-13.
  2. (Ingelesez) Javier Ortega-Hernández; Smith, Martin R.. (2014-10). «Hallucigenia’s onychophoran-like claws and the case for Tactopoda» Nature (7522): 363–366 doi:10.1038/nature13576 ISSN 1476-4687 . Noiz kontsultatua: 2019-04-13.
  3. Siebold, C. Th E. von (Carl Th Ernst); Stannius, Hermann. (1846). Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. Berlin : Veit . Noiz kontsultatua: 2020-06-15.
  4. Hegna, Thomas A. Legg, David A. Møller, Ole Sten Van Roy, Peter Lerosey-Aubril, Rudy. (2013). The correct authorship of the taxon name ‘Arthropoda". PMC 870253892 . Noiz kontsultatua: 2020-06-15.
  5. Valentine, James W.. (2004). On the origin of phyla. University of Chicago Press ISBN 0226845486 PMC 52821100 . Noiz kontsultatua: 2019-04-13.
  6. (Ingelesez) Cutler, B.. (1980-08-01). «Arthropod cuticle features and arthropod monophyly» Experientia (8): 953–953 doi:10.1007/BF01953812 ISSN 1420-9071 . Noiz kontsultatua: 2019-04-13.
  7. «The Arthropod Story» evolution.berkeley.edu . Noiz kontsultatua: 2019-04-13.
  8. (Ingelesez) Ødegaard, Frode. (2000-12-01). «How many species of arthropods? Erwin's estimate revised» Biological Journal of the Linnean Society (4): 583–597 doi:10.1111/j.1095-8312.2000.tb01279.x ISSN 0024-4066 . Noiz kontsultatua: 2019-04-13.
  9. Thompson, John N.. (1994). The coevolutionary process. University of Chicago Press ISBN 9780226797670 PMC 593240132 . Noiz kontsultatua: 2019-04-13.
  10. a b c d e f g h i j k l m n o p q r s Ruppert, Edward E.. (2004). Invertebrate zoology : a functional evolutionary approach. (7th ed. argitaraldia) Thomson-Brooks/Cole ISBN 0030259827 PMC 53021401 . Noiz kontsultatua: 2019-04-13.
  11. Schmidt-Nielsen, Knut, 1915-2007.. (1984). Scaling, why is animal size so important?. Cambridge University Press ISBN 0521266572 PMC 10697247 . Noiz kontsultatua: 2019-04-13.
  12. «Chapter 30: Largest | The University of Florida Book of Insect Records | Department of Entomology & Nematology | UF/IFAS» entnemdept.ufl.edu . Noiz kontsultatua: 2019-04-13.
  13. (Ingelesez) Shelton, Jim. (2015-03-11). «Giant sea creature hints at early arthropod evolution» YaleNews . Noiz kontsultatua: 2020-06-16.
  14. Gould, Stephen Jay. (2000). Bai bizi zoragarria: Burgess Shale eta historiaren izaera. ISBN 978-84-87203-41-1 . Noiz kontsultatua: 2020-06-16.
  15. Shaking the tree : readings from Nature in the history of life. University of Chicago Press 2000 ISBN 0-226-28496-4 PMC 42476104 . Noiz kontsultatua: 2020-06-16.
  16. Whittington, H B. (1971). Redescription of Marella Splendens (trilobitoidea) from the burgess shale, middle cambrian, British Columbia. . Noiz kontsultatua: 2020-06-16.
  17. (Ingelesez) Budd, Graham E.. (2002-05). «A palaeontological solution to the arthropod head problem» Nature (6886): 271–275 doi:10.1038/417271a ISSN 1476-4687 . Noiz kontsultatua: 2020-06-16.
  18. GODDARD, PINY EARLE. (1927-04-06). «FACTS AND THEORIES CONCERNING PLEISTOCENE MAN IN AMERICA» American Anthropologist (2): 262–266 doi:10.1525/aa.1927.29.2.02a00080 ISSN 0002-7294 . Noiz kontsultatua: 2020-06-16.
  19. a b Mechanical design in organisms. Princeton University Pr 1982 ISBN 0-691-08306-1 PMC 8836689 . Noiz kontsultatua: 2020-06-16.
  20. Lowenstam, Heinz A. (Heinz Adolf), 1912-1993.. (1989). On biomineralization. Oxford University Press ISBN 1-4237-3617-6 PMC 228118653 . Noiz kontsultatua: 2020-06-16.
  21. Dzik, J.. (2007). «The Verdun Syndrome: simultaneous origin of protective armour and infaunal shelters at the Precambrian–Cambrian transition» Geological Society, London, Special Publications (1): 405–414 doi:10.1144/sp286.30 ISSN 0305-8719 . Noiz kontsultatua: 2020-06-16.
  22. a b (Ingelesez) Cohen, Bernard L.. (2005-08-01). «Not armour, but biomechanics, ecological opportunity and increased fecundity as keys to the origin and expansion of the mineralized benthic metazoan fauna» Biological Journal of the Linnean Society (4): 483–490 doi:10.1111/j.1095-8312.2005.00507.x ISSN 0024-4066 . Noiz kontsultatua: 2020-06-16.
  23. (Ingelesez) Bengtson, Stefan. (2004/11). «Early skeletal fossils» The Paleontological Society Papers (10): 67–78 doi:10.1017/S1089332600002345 ISSN 1089-3326 . Noiz kontsultatua: 2020-06-16.
  24. The invertebrates : a synthesis. Blackwell Pub (2002 printing) ISBN 9780632047611 PMC 44425487 . Noiz kontsultatua: 2020-06-16.
  25. Zentner, Lena. (2012-12-07). «Modelling and Application of the Hydraulic Spider Leg Mechanism» Spider Ecophysiology (Springer Berlin Heidelberg): 451–462 ISBN 978-3-642-33988-2 . Noiz kontsultatua: 2020-06-16.
  26. (Ingelesez) Garwood, Russell J.; Edgecombe, Gregory D.. (2011/09). «Early Terrestrial Animals, Evolution, and Uncertainty» Evolution: Education and Outreach (3): 489–501 doi:10.1007/s12052-011-0357-y ISSN 1936-6434 . Noiz kontsultatua: 2020-06-17.
  27. (Ingelesez) Garwood, Russell J.; Edgecombe, Gregory D.. (2011/09). «Early Terrestrial Animals, Evolution, and Uncertainty» Evolution: Education and Outreach (3): 489–501 doi:10.1007/s12052-011-0357-y ISSN 1936-6434 . Noiz kontsultatua: 2020-06-19.

Kanpo estekakAldatu

Wikispezieetan bada informazioa gehiago, gai hau dela eta: Artropodo
Gai honi buruzko informazio gehiago lor dezakezu Scholian