Adimen artifizial
Adimen artifiziala (AA; maiz ,IA edo AI ere) makinek frogatutako adimena da (informazioaren pertzepzioa, sintesia eta inferentzia), gizakiak ez diren animaliek edo gizakiek erakutsitako adimenari kontrajarria. Mota horretako lanen adibideak dira ahotsa ezagutzea, ordenagailuen ikusmena, hizkuntzen arteko itzulpena (naturalak) eta beste datu-konbinazio batzuk.

AAren aplikazioek web-bilaketarako motor aurreratuak (adibidez, Google Search), gomendio-sistemak (YouTubek, Amazonek eta Netflixek erabiltzen dituztenak), giza hizketaren ulermena (Siri eta Alexa, esaterako), ibilgailu autonomoak (adibidez, Waymo), tresna sortzaile edo generatiboak (ChatGPT eta AA artea), erabaki automatizatuak hartzea eta maila goreneko lehia joko-sistema estrategikoetan (xakea eta Go).
Makinak gero eta gaiago bihurtzen diren heinean, "inteligentzia" eskatzen duten zereginak AAren definiziotik ezabatzen dira askotan, AA efektua bezala ezagutzen den fenomenoa[1]. Adibidez, karaktereen ezagupen optikoa AA gisa hartzen denetik kanpo utzi ohi da, ohiko teknologia bihurtu baita[2].
Adimen artifiziala diziplina akademiko gisa sortu zen 1956an, eta, ordutik, hainbat baikortasun-bolada izan ditu[3][4]; ondoren, etsipena eta finantziazio-galera ("AAren negua" esaten zaiona), eta, ondoren, ikuspegi berriak, arrakasta eta finantzaketa berritua. AAko ikerketak ikuspegi desberdin asko probatu eta baztertu ditu, hala nola, garunaren simulazioa, gizakiek problemen ebazpenaren modelatzea, logika formala, ezagutzaren datu-base handiak eta animalien portaeraren imitazioa. XXI. mendeko lehen hamarkadetan, ikaskuntza automatiko matematiko eta estatistiko handia nagusi izan da eremuan, eta teknika hori oso arrakastatsua izan dela erakutsi du, industria eta mundu akademiko osoan erronkazko arazo asko konpontzen lagunduzTxantiloi:Sfnp.
AAko ikerketaren azpieremuak helburu zehatzetan eta tresna espezifikoen erabileran oinarritzen dira. AAko ikerketaren helburu tradizionalen artean daude arrazoitzea, ezagutza irudikatzea, planifikatzea, ikastea, hizkuntza naturala prozesatzea, pertzepzioa eta objektuak mugitzeko eta manipulatzeko gaitasuna. Adimen orokorra (arazo arbitrario bat konpontzeko gaitasuna) da eremu horren epe luzerako helburuetako bat. Arazo horiek konpontzeko, AAko ikertzaileek problemak ebazteko teknika ugari egokitu eta integratu dituzte, hala nola bilaketa eta optimizazio matematikoa, logika formala, sare neuronal artifizialak eta estatistikan, probabilitatean eta ekonomian oinarritutako metodoak. Informatikan, psikologian, hizkuntzalaritzan, filosofian eta beste arlo askotan ere oinarritzen da AA.
Giza adimena "hain zehatz deskribatu daiteke, ezen simulatzen duen makina bat egin daitekeen" ustean sortu zen eremua. Honek giza adimenaren antzekoa gaitasuna zuten izaki artifizialak sortzearen eta ondorio etikoen gaineko argudio filosofikoak sorrarazi zituen; gai hauek antzinatik aztertu zituzten mitoak, fikzioak eta filosofiak. Ordutik, informatikariek eta filosofoek iradoki dute AA arrisku existentzial bihur daitekeela gizateriarentzat, haien gaitasun arrazionalak helburu onuragarrietara bideratzen ez badira. Adimen artifiziala ere kritikatu izan da AAren benetako gaitasun teknologikoak puzteagatik.
SarreraAldatu
Oro har, adimen artifiziala bi ikuspuntuetatik aztertzen da:
- Epistemologiaren aldetik, hau da gizakiaren jakintzaren teorian sakontzen duen filosofiaren abarretik.
- Informatikaren ikuspuntutik, orain arte gizakiek soilik ebatz zitzaketen arazoak ebazteko bide berriak bilatzen dituena, aktibitate hauek automatizatu nahian. Gizakiak erabiltzen dituen arrazoibideak jarraituz ebatzi behar diren problemak modelatu eta automatizatzen saiatzen den informatikaren arloaren ildotik. Hau dela eta, gizakiaren pentsaeraren azterketa beharrezkoa suertatzen da, eta baita honen eredu konputazionalak garatzea ere.
Zientziaren aurrerapenarekin batera adimen artifiziala (AA) bi bide nagusietara bideratu da: gizakiaren pentsamendu (psikologikoaren) eta fisiologikoa ikertzera eta sistema informatikoen garapen teknologikora.
Terminoaren definizioari buruzAldatu
Lagunartean, adimen artifiziala terminoa makina batek gizakiek beste gizakien adimenekin lotzen dituzten funtzio «kognitiboak» imitatzen dituenean aplikatzen da, adibidez: «hautematean», «arrazoitzean», «ikastean» eta «arazoak konpontzean»[5]. Andreas Kaplanek eta Michael Haenleinek honela definitzen dute adimen artifiziala: «Sistema batek kanpoko datuak behar bezala interpretatzeko duen gaitasuna, datu horietatik ikasteko eta ezagutza horiek egokitzapen malguaren bidez zeregin eta xede zehatzak lortzeko erabiltzeko duen gaitasuna»[6]. Gorka Azkunek atazen araberako definizio bat ematen du: «Ezin dugunez besterik gabe esan makina batek adimena daukan edo ez, egiten duguna da makina horri ataza batzuk jarri, gure ustez izaki adimentsu batek bakarrik ebatzi litzakeenak, eta ikusten dugu makinak zenbateraino ondo egiten dituen ataza horiek».[7] Makinak gero eta gai bihurtzen diren heinean, noizbait giza- eta adimen-beharra zegoela pentsatu izan den teknologia hori ezabatu egiten da definiziotik.
Adibidez, karaktereen ezagupen optikoa ez da jada «adimen artifizialaren» adibidetzat hartzen, teknologia arrunt bihurtu baita[8]. Oraindik, adimen artifizial gisa sailkatuta dauden aurrerapen teknologikoak gidatzeko sistema autonomoak edo xakean edo Go jokatzeko gai direnak dira[6].
Adimen artifiziala arazoak konpontzeko modu berri bat da, eta horien barruan sartzen dira sistema adituak, roboten maneiua eta kontrola eta prozesadoreak. Sistema horietan, ezagutza integratzen saiatzen da, beste era batera esanda, bere programa propioa idazteko gai den sistema adimendun bat. Arlo jakin bati buruzko ezagutza biltegiratzeko eta erabiltzeko gai den programazio-egitura gisa definitutako sistema aditu bat, ikasteko gaitasuna dakarrena[9]. Era berean, makinek algoritmoak erabiltzeko, datuetatik ikasteko eta erabakiak hartzerakoan ikasitakoa gizaki batek egingo lukeen moduan erabiltzeko gaitasuntzat har daiteke adimen artifiziala; gainera, adimen artifizialaren ikuspegi nagusietako bat ikaskuntza automatikoa da, eta, beraz, ordenagailuek edo makinek ikasteko gaitasuna dute horretarako programatuta egon gabe[10].
Takeiasen arabera (2007), AA zientzia konputazionalen adar bat da, gizakien berezko jarduerak egiteko gai diren zenbaketa-ereduak aztertzeaz arduratzen dena, haien bi ezaugarri nagusitan oinarrituta: arrazoiketa eta jokabidea[11].
1956an, John McCarthyk «adimen artifiziala» esamoldea sortu zuen, eta honela definitu zuen: «makina adimendunak egiteko zientzia eta asmamena, batez ere konputazio adimenduneko programak»[12].
Era berean, hainbat pertzepzio eta ekintza mota daude, sentsore fisiko eta sentsore mekanikoen bidez lortu eta ekoitzi daitezkeenak, hurrenez hurren, makinetan, pultsu elektriko edo optikoen bidez konputagailuetan, bai eta software baten eta software-ingurunearen bit-sarreren eta -irteeren bidez ere.
Hona hemen adibide batzuk: sistemen kontrola, plangintza automatikoa, diagnostikoei eta kontsumitzaileen kontsultei erantzuteko gaitasuna, idazketaren ezagutza, hizketaren ezagutza eta patroien ezagutza. Gaur egun, AAko sistemak errutinaren parte dira ekonomian, medikuntzan, ingeniaritzan, garraioan, komunikazioetan eta milizian, eta programa informatiko, konputagailuko xake bezalako estrategia-joko eta beste bideojoko askotan erabili izan da.
HistoriaAldatu
AurrekariakAldatu
Adimen artifizialaren jatorria psikologian bertan datza, zehazki giza pentsamenduaren modelo bat sortzeko nahian. Adimen artifizialaren kontzeptua aspaldidanik gizakiak amestu izan duen ahalmen batekin erlazionaturik dago, materia bizigabea bizteko ahalmenarekin. Pragako Golemaren kondairan eta modernoagoa den Frankenstein doktorearen kontakizunean nabari liteke antzekorik. Hala ere, dakigunez Samuel Butler, Zeelanda Berrian bizitako idazle Britaniarra izan zen gaur egun darabilgun kontzeptuaren lehen zantzuak adierazi zituena, 1863an Darwin makinen artean izeneko idazki batean kontzientzia mekanikoa aipatu zuenean.
Hala dirudien arren adimen artifiziala ez da soilik robotikarekin zerikusia duen zientzia; adimen kolektiboaren azterketa izan da adimen artifizialaren sustatzaileetako bat soziologiak, biologiak, zientzia politikoek, marketinak... aspaldidanik aurreikusi nahi izan dituzte gizakien joerak eta erabakiak horretarako adimen artifiziala modelo bezala erabili litekeelarik.
Lehen ekimenakAldatu
1940ko hamarkadan hasi ziren adimen artifiziala informatikaren bidez lortzeko lehen ekimenak, ildo horretatik agertu ziren ere lehen idazki eta artikuluak besteak beste: 1943. urtean Warren McCulloch eta Walter Pittsek argitaratutako Logika kalkuluak, ideia Immanenteak eta Nerbioen Aktibitateak edota 1950. urtean azaldu ziren Alan Turingen Makinaria konputagailua eta inteligentzia eta J.C.R. Licklidereen Izaki-konputagailu sinbiosia.
Honen aurretik, 1948. urtean, John von Neumann eta E.T. Jaynesek jada honakoa esana zioten makinek pentsatzeko ahalmena sekula lortuko ez zutela esan zuen ikasle bati "Makinek egin ezin dituzten gauzak badirelakoan jarraitzen duzu. Argi eta zehatz esango bazenit zer den egin ezin dezaketena orduan diozun hori egiteko ahalmena duen makina bat eraikiko dut!".
1969an McCarthyk eta Hayesek frame arazoei buruzko aurkikuntza bat egin zuten eta beraien idazlanetan honako hau jarri zuten, "Filosofia arazo batzuk Adimen Artifizialetik eratorriak dira".
Inteligentzia artifizialaren aurkikuntzakAldatu
1950. urtean Allen Newell eta Herbert Simonek Carnegie Mellon Unibertsitateko laborategian adimen artifiziala lortzeko lehen saiakerak burutu zituzten. Hauen ondoren 1959. urtean McCarthy eta Marvin Minskyk ere MITko Adimen Artifizial Laborategian zenbait lan egin zuten.
Historikoki, bi ikerketa-bide daude adimen artifizialaren arloan - "neats"ena eta "scruffies"ena. "Neat", klasikoa edo sinbolikoa dugu AAren arloan, orokorrean, manipulazio sinbolikoz inguraturik dago eta kontzeptu abstraktuez, eta hau da gehien erabiltzen den metodologia adituen esanetan sistemen arloan. Paralelikoki "scruffy", edo "konexionista", gehiago hurbiltzen da, neurona-sare artifizialera. Hauek dira adibiderik onenak, sistema eta antolakuntza berriak eraikiz adimenera "inguratzen" saiatzen direnak eta prozesu automatiko eta sistematiko asko hobetuz arazo hau amaitzen dute dena osatuz. Biak nahikotxo hurbiltzen dira IAren historiara. 1960 eta 1970. urtean "scruffy" hurbildu zen "background"era, baina interesa gauzatu zen 1980. urtean "neat"en mugak argi geratu zirenean. Bestalde, gaur egun biak erabiltzen dira bata bestea osatuz hobeto funtzionatzen baitute.
Adimen artifiziala eta informatikaAldatu
Adimen artifizialaren hasiera ordenagailuenarekin batera izan zen, 1956. urtean John McCarthyk adimen artifizialaren terminoa sortu zuen, eta ordutik ondorengo etapak ezberdintzen dira:
- Hasierako azterketa zientifikoaren etapa ( 1956-1970 ). Bilaketa heuristikoaren metodoak eta dedukzio-automatikoarenak ere agertzen dira. Lehenengoek problemak grafikoez adierazi eta ebazteko teknika heuristikoak erabiltzen dituzte, eta bigarrenek, logikan oinarritutakoak. Etapa honetan agertu zen LISP hizkuntza adimen artifizialerako egokituta, eta baita ere sare semantikoak ezagupena adierazteko.
- Prototipoen etapa ( 1970-1980 ): Aurreko etapako fundamentu teorikoek prototipo batzuen agerraldia eragintzen dute: STRIPS proiektua roboten planifikazioan, gizakien hizkuntza ulertzeko MARCO ezagupenen adierazpen-paradigma, lehenengo sistema adituak ( MYCIN, gaixotasunen diagnostikorako...) eta 1972 urtean programazio logikoaren planteamendua, PROLOG hizkuntza sortarazi zuena.
- Difusio-etapa. Oraingoa. Ezagupen-ingeniariaren sakabanatzea ematen da. Adimen artifizialera dedikaturiko enpresak agertzen dira, aplikazio honetarako erremintak merkatura zabaltzen. Aurrerapen handiak ematen dira sistema adituetan eta datu-baseentzako hizkuntza naturalean, eta ez hain handiak ikusmen artifizial eta robotikan.
Adimen artifizialaren aztertze-eremuakAldatu
Hizkuntza naturalen prozesamenduaAldatu
Arlo honetan sartzen dira:
- Hizkuntza idatzia ezagutzen duten sistemak, adibidez datu-baseak kontsultatzeko
- Ahozko hizkuntza jaso eta idazten duten sistemak
- Ahozko hizkuntzen bat-bateko itzulpen sistemak. Hauek oraindik ez daude hain aurreratuta.
Pertsonek euren artean hitz egiterakoan, mezuaz gain beste hainbat ezagutza komun dituzte: ingurukoena.
RobotikaAldatu
Robotak osatzen dituzten sistemen ikasketa alde batetik, eta beste alde batetik, euren adimenarena. Robot bat bere inguruko egoera identifikatu eta uneko egoera beste egoera objektibo batera pasatzeko gai den sistema bat da, horretarako zeregin batzuk planifikatzen. Oso konplexuak dira bai identifikazioa bai zereginen planifikazioa egoeraz aldatzeko.
Ikusmen artifizialaAldatu
Ikusmen artifizialaren helburua formak eta objektuak identifikatzeko gai diren sistema batzuk garatzea da. Bi dimentsioetako arloan arrakasta batzuk lortu izan dira, baina zailtasun handiagoak daude 3D kasuan. Bere aplikazioa batez ere robotikan ematen da.
Ezagutzaren adierazpenaAldatu
Bere helburua ezagupena ordenagailuan islatzea da era ulerkor batean eta malgutasunaz. Errealitatearen zati baten deskribapena da, bere egoeraz eta berari buruz dagoen jakintzaz. Jakintza honek alde bi ditu:
- Objektuak, kontzeptuak eta euren arteko erlazioak
- Jakintza hau interpretatzeko erabili behar den prozesua, hau da, eremu horretan arrazoitu ahal izateko inferentzia mekanismoak
Sistema adituakAldatu
Sistema adituek normalean gizaki adituek ebazten dituen problemak ebazten dituzte, etekin antzekoaz. Horretarako ezagupen basea handia behar dute eremuari buruz, mekanismo bat ezagupen horiek aplikatzeko eta beste bat erabiltzaileari azaltzeko zer egin den. Jakintza berria sistemara gehitzeko kapaz izan behar dute, eta baita ere lan egiteko nahiz eta jakintza osoa ez izan.
IrakaskuntzaAldatu
Zaila da aurreikustea adimen artifizialak zelako ekarpenak ekarriko dituen datozen urteotan gizakion ikaskuntza bideetan[13][14][15].
IkasketaAldatu
Ikus, gaineraAldatu
ErreferentziakAldatu
- ↑ McCorduck 2004, 204 orr. .
- ↑ Schank 1991, 38 orr. .
- ↑ Crevier 1993, 109 orr. .
- ↑ 1980ko hamarkadaren hasieran garatu ziren lehenengo proiektuak: Fifth Generation Project (Japonia), Alvey (Erresuma Batua), Microelectronics and Computer Technology Corporation (AEB), Strategic Computing Initiative (AEB):
- (McCorduck 2004, 426–441 orr. )
- (Crevier 1993, 161–162,197–203, 211, 240 orr. )
- (Russell & Norvig 2003, 24 orr. )
- (NRC 1999, 210–211 orr. )
- (Newquist 1994, 235–248 orr. )
- ↑ , Russell & Norvig 2009, 2 orr. .
- ↑ a b (Ingelesez) «Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence - ScienceDirect» web.archive.org 2018-11-21 (Noiz kontsultatua: 2023-02-05).
- ↑ Arruabarrena, Isabel Jaurena-Mikel P. Ansa- Jone. «FIKZIOTIK ERREALITATERA» Berria (Noiz kontsultatua: 2023-04-16).
- ↑ Schank, Roger C. (1991). «Where's the AI» (PDF). AI Magazine 12 (4): 38
- ↑ (Gaztelaniaz) Ingelek. (1986). Biblioteca Basica Informatica 28 Inteligencia Artificial. (Noiz kontsultatua: 2023-02-05).
- ↑ (Gaztelaniaz)Rouhiainen, Lasse (2018). Inteligencia Artificial 101 cosas que debes saber hoy sobre nuestro futuro. Alienta. 2021ean begiratua
- ↑ (Gaztelaniaz)López Takeyas, Bruno. «Introducción a la Inteligencia Artificial»
- ↑ (Ingelesez) «Basic Questions» www-formal.stanford.edu (Noiz kontsultatua: 2023-02-05).
- ↑ (Ingelesez) «Spotlight: Let's ask more of AI» The Internet Health Report 2019 2019-03-13 (Noiz kontsultatua: 2019-05-04).
- ↑ (Ingelesez) «Anatomy of an AI System» Anatomy of an AI System (Noiz kontsultatua: 2019-05-04).
- ↑ (Ingelesez) Johnson, Eric. (2019-04-08). «How will AI change your life? AI Now Institute founders Kate Crawford and Meredith Whittaker explain.» Vox podcasts (Noiz kontsultatua: 2019-05-04).
BibliografiaAldatu
Kanpo estekakAldatu
OrokorrakAldatu
- Programming:AI @ Wikibooks.org
- University of Berkeley AI Resources linking to about 869 other WWW pages about AI
- Loebner Prize website
- Jabberwacky - a learning AI chatterbot
AIAWiki - AI algorithms and research.(temporarily offline due to problems with spammers)- AI web category on Open Directory
- Mindpixel "The Planet's Largest Artificial Intelligence Effort"
- OpenMind CommonSense "Teaching computers the stuff we all know"
- Artificially Intelligent Ouija Board - creative example of human-like AI
- Heuristics and AI in finance and investment
- SourceForge Open Source AI projects - 1139 projects
- Ethical and Social Implications of AI en Computerization
- AI algorithm implementations and demonstrations
- Marvin Minsky's Homepage
- MIT's AI Lab
- AI Lab Zurich
- School of Informatics at the University of Edinburgh
- Informatics Department at the University of Sussex
- AI research group at Information Sciences Institute
- Why Programming is a Good Medium for Expressing Poorly Understood and Sloppily Formulated Ideas
- aiKnow: Cognitive Artificial Intelligence
- What is Artificial Intelligence?
- Stanford Encyclopedia of Philosophy entry on Logic and Artificial Intelligence
- Mental Matrixes, Parallel Logic
- AI Search Engine
- AI jokun baten garapenean (Euskaraz)
Inteligentzia artifizialarekin lotutako erakundeakAldatu
- AI Consortium
- American Association for Artificial Intelligence
- European Coordinating Committee for Artificial Intelligence
- The Association for Computational Linguistics
- Artificial Intelligence Student Union
- German Research Center for Artificial Intelligence, DFKI GmbH
- Association for Uncertainty in Artificial Intelligence
- Singularity Institute for Artificial Intelligence
- The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (United Kingdom)
- AGIRI - Artificial General Intelligence Research Institute