Bilketa (multzo-teoria)

Matematikan, multzo-teoriaren barruan, bilketa multzoen artean definitzen den eragiketa bat da. Eragiketa horrek multzo bat sortuko du, bildura multzoa deiturikoa, zeinek multzoetako elementu guztiak biltzen dituen. Bilketa adierazteko, ikurra erabiltzen da, eta bil irakurtzen da. Adibidez, A eta B multzoetako elementuen bilketa honela adierazten da:

A eta B bi multzoen bilketatik AB beste multzo bat sortzen da, bildura deiturikoa, A eta B multzoetako elementu guztiak dituena.
, (A bil B irakurtzen da).
Sinboloa
Izena Esanahia Adibideak
Ahoskera
Adarra
Bilketa (A eta B multzoen bildura, hots, A-koak edo B-koak edo bietakoak diren elementuen multzoa)
«a bil be»
«... bil ...»
Multzo-teoria

Definizioa

aldatu

A eta B multzoak kontuan izanda, A B A-ko, B-ko edo bietako elementu guztiak biltzen dituen multzoa da:

 

Adibidea

{1, 2, 3, 4} U {5, 2, 1} = {1, 2, 3, 4, 5}

Kontuan izan multzoen bilketan errepikatutako elementuak behin bakarrik agertzen dira, multzoek ezin baitute elementu errepikaturik izan.

Bildura orokortua

aldatu

Bi multzo baino gehiagoko multzo kopuru mugatu baten bildura defini daiteke:

A1, ..., An multzoen bilduma finitu baten bildura, bilduma horretan multzo bakoitzeko elementu guztiak biltzen dituen multzoa da:

 

· Multzo-familia indizeduna izanik, bildura orokortua honela adierazten da:

 

Beraz,

 

Multzoen bilketaren propietateak

aldatu

Izan bitez A, B, C multzoak.

 
 
 
 

  multzo bat eta   bere osagarria   multzoarekiko baditugu,   eta   multzoen bildura   da.

 
A eta B multzoak baditugu, non   (A-k parte du B), orduan  

Banatze propietatea betetzen du ebakidurarekin

  •  
  •  

 

 

Ikus, gainera

aldatu

Kanpo estekak

aldatu