Estatistikan, mediana hainbat datu txikienetik handienera ordenaturik daudela, erdian dagoen datua da[1]. Beraz, medianak alde banatara datuen %50ak uzten ditu.[2] Probabilitate banaketa baterako ere kalkula daiteke eta orduan alde banatara eta orduan azpitik eta gainetik 0,5eko probabilitatea uzten duen balioa da.

Hainbat zenbakiren mediana kalkulatzeko bi adibide (bideokoak).

Datu ordenatuen
multzo konpletoa
kopuru bakoitia
bada aztertzekoa
mediana da erdian
den zenbatekoa
Ta bikoitia bada
erabatekoa
Erdian dauden bien
bataz-bestekoa

(Jone Uria)

Mediana zentro-neurri bat da, batezbesteko aritmetiko sinplea bezala esaterako, eta neurri adierazgarriagoa da muturreko datuak daudenean. Adibidez, gela bateko 10 objektuen tenperaturak jaso eta horietan labea 175 °C gradutan bada, nahiz eta beste guztiak 20 °C-25 °C artekoak izan, batez besteko tenperatura 35.5 °C-40 °C tartean izango da, baina mediana 20 °C-25 °C artekoa izango da, eta hori gelako egoera zein den deskribatzeko balio egokiagoa da. Horrelako egoeretan mediana egokiagoa izaten da balio orokor edo zentro neurri bat emateko.

Kalkulua lagin baterakoAldatu

Lagin baterako, datu kuantitatiboak txikienetik handienera ordenatuta daudela, erdian kokatzen den datua da mediana. Horrela, kalkulua ezberdina da n datu kopurua zenbaki bakoitia edo zenbaki bikoitia den.

Lagin-tamaina edo datu-kopurua bakoitia bada, datuak ordenaturik daudela, mediana erdiko datuak hartzen duen balioa da. Adibidez, ordenatuta dauden 15 datu hauetarako mediana 8. posiziokoa da,[3]

 2, 3, 4, 4, 6, 7, 7, 7, 8, 8, 8, 8, 9, 14, 17
 

Datu-kopurua bikoitia bada, datuak ordenaturik daudela, erdiko datu bi dagoenez, mediana erdiko bi datu horien batezbestekoa dela esan daiteke. Adibidez, lehengo zenbakien artean bat kentzen badugu ordenatuta dauden 14 datu hauetarako mediana 7. eta 8. posizioan dauden zenbakien batezbestekoa da:

2, 3, 4, 4, 6, 7, 7, 8, 8, 8, 8, 9, 14, 17
 


Dena dela, badira bestelako modu batzuk mediana kalkulatzeko.

Kalkulua tartetan bildutako datuetarakoAldatu

Datuak tartean bildurik daudenean, mediana hurbilketaz kalkulatzen da[4], aurretik mediana kokatzen den tartea zehaztuz. Kalkulurako erabiltzen den formula hau da:

 

Adibidez, herri bateko biztanleen adinari buruzko datu hauek emanda,

Biztanleen adinak Biztanleak Maiztasun metatuak
0-20 9 9
20-40 18 27
40-60 26 53
60-80 7 60
80-100 4 64

Maiztasun metatuak kalkulatu ondoren, hirugarren zutabean, datu kopurua 64 dela ikusten da. Beraz, mediana 64/2=32garren datuaren balioa izango da. Maiztasun metatuen zutabeari erreparatuz, 32garren datua 40-60 tartean kokatzen da. Beraz, bertan izango da mediana:

 

Beraz, biztanleen erdiek 43.84 urte baino gutxiago dauzkate. Ohartarazi behar da, ordea, emaitza hau hurbilketa baten ondorioa dela eta emaitza zehatza izateko hobe dela jatorrizko datu zerrenda hartzea.

 
Medianaren kalkulua datuak tartetan bilduta daudenean, interpolazio linealez egiten da. Mediana kokaturik dagoen tartea 40-60 da. Medianatik behera (marra eten gorriz) 32 datu daude, datuen erdiak alegia. 40 urtetik behera 27 biztanle daude. 60 urtetik behera 53 biztanle daude. Bi puntuak lotuz, OAB eta OCD hirukiak baliokideak dira eta, beraz, katetoen arteko erlazio berdina dute. OAB triangeluan, OB=x eta AB=5. OCD triangeluan OD=20 eta CD=26. Hiruko erregela sinple batez x=3.82 eta beraz, mediana 40+x=43.82 dela ondorioztatzen da.

Mediana probabilitate banakuntzetanAldatu

Probabilitate banakuntzetan, bere azpitik %50eko probabilitatea (eta ondorioz, bere gainetik ere %50eko probabilitatea) uzten duen balioa da. Beraz, banaketa jarraia bada hau betetzen duen Me balioa da mediana:

 

PropietateakAldatu

Abantaila gisa, balio osoko aldagaietan, medianaren emaitza ere zenbaki osoa da. Adibidez, familiako haur kopuruaren batezbesteko aritmetiko sinplea 2.37 haur izan daitekeen bitartean, medianak beti balio oso bat emango du (1, 2, 3), interpretazioa erraztuz horrela.

Aldi berean, muturreko datuak daudenean zentro neurri egokiagoa da batezbesteko aritmetiko sinplea baino. Adibidez, { 1, 2, 2, 2, 3, 9 } datuetarako, mediana 2 da, zentroaren balio adierazgarri bat, batezbesteko aritmetiko sinplea zentroaren adierazgarri ez den 3,166… delarik. Muturreko datuek medianaren balioan eragin nabarmenik ez dutela eta, mediana estatistiko jasankorra dela esaten da. Alborapen handiko banakuntzetan ere, batezbestekoa baion neurri egokiagoa da.

Eragozpen gisa, datu guztiak kontuan hartzen ez dituela aipatu behar da. Bere kalkulua formula bidez adierazteko oztopoak izateaz gainera, ez da matematikoki garatzen erraza.

Propietate matematikoei buruz,

  •   lagin datuetarako ondoko adierazpena txikien egiten duen m balioa da mediana:
 ;
  • bi datu-multzo bateratzen badira, baterako mediana aurreko medianen tartean izango da.

ErreferentziakAldatu

  1. Beraz, datuak ordenatu egin behar direnez, aldagai bakun koantitatiboetarako edo ordinaletarako bakarrik kalkula daiteke.Adibidez, Likert eskalazko datuetarako posible da mediana kalkulatzea, baina hauteskundeetan emandako botua eta bestelako aldagai koalitatiboetarako ezin da kalkulatu.
  2. Beraz, mediana 2-kuantila ere bada, eta bat dator bigarren kuartilarekin, bostgarren deizlarekin eta 50. pertzentilarekin.
  3.   aldagai baterako, mediana  ,   edo   moduan izendatzen , ohikoena   izanik.
  4. Hurbilketaz datuak tartean zehar datuak uniformeki banatzen direla suposatzen da.

Kanpo estekakAldatu