Matrize diagonal

Diagonal nagusian ez dauden elementu guztien balioa zero den matrize karratua. Diagonal nagusiko elementuen balioa edozein izan daiteke, baita zero ere.

Aljebra linealean, matrize diagonala matrize karratu bat da, diagonal nagusian ez dauden elementu guztien balioa zero dena. Diagonal nagusiko elementuen balioa edozein izan daiteke, baita zero ere. Beraz, matrizea diagonala da baldin eta soilik:

bada. Hau da:
.

Adibidez, honako matrize hau diagonala da:

Matrize diagonalaren beste adibide bat unitate matrizea da.

Askotan, matrize diagonala izendatzeko diag(a1,...,an) notazioa erabiltzen da, non a1,...,an diagonal nagusiko elementuak diren, goiko ezkerretik hasita. Hau da, aurreko adibidea diag(1,4,-2) notazioarekin ere idatz daiteke; aldiz, matrize identitateak diag(1,1,...,1) motakoak dira.

Matrize diagonal guztiak simetrikoak eta (goi- eta behe-) triangeluarrak dira; eta, elementuak edo gorputzekoak badira, normalak deitzen dira.

Matrize diagonalgarria

aldatu

Izan bedi  . Esaten da   diagonalgarria dela, existitzen bada  -ri elkartutako   matrize diagonal bat, edo baliokidea dana, bektore propioz osatutako  -ren  -oinarri bat lor badaiteke, izan ere, kasu horretan   izango baita.

  •   matrize karratu diagonalgarria dela diogu   matrize diagonala  -rekin antzekoa (  ) dana. Endomorfismo bati elkartutako matrizeek elkarren artean antzekoak diranez, hau dogu:

  eta   edozein badira:   diagonalgarria   diagonalgarria.

Bereziki,   edozein matrize karratu bada,

  diagonalgarria   matrizea modu naturalean definitzen dauan   endomorfismoa diagonalgarria bada.

  izanik ( ), orduan   diagonalgarria da bi kasu honeek betetzen dauzanean:

  1.   polinomioaren   erroak   gorputzean dagoz. Kasu honetan    -ren gainean banatzen dala esaten da.
  2.  -ren balio propio guztietarako  

Eragiketak matrizeekin

aldatu

Batuketa eta matrizeen biderketa eragiketak oso errazak dira matrize diagonalekin. Batuketarako:

diag(a1,...,an) + diag(b1,...,bn) = diag(a1+b1,...,an+bn)

eta matrizeen biderketarako,

diag(a1,...,an) · diag(b1,...,bn) = diag(a1b1,...,anbn).

diag(a1,...,an) matrize diagonalak alderantzizko matrizea izango du, baldin eta soilik a1,...,an elementuak 0 ez badira. Orduan, hau daukagu

diag(a1,...,an)-1 = diag(a1-1,...,an-1).

Bereziki, matrize diagonalek azpieraztun bat osatzen dute, n×n dimentsioko matrizeen eraztunaren parte dena.

Kanpo estekak

aldatu