Trukatze-matrize
Matematikan, bereziki aljebra linealean, trukatze-matrizea permutazio-matrizeen kasu berezi bat da, non kontradiagonaleko elementuen balioa 1 dena, eta gainerakoena 0. Beste hitzez, unitate matrizearen bertsio bat da, errenkadak edo zutabeak alderantzikatuak dituena.
Definizioa
aldatuJ n×n trukatze-matrize bat bada, orduan J-ren elementuak honela definitzen dira:
Propietateak
aldatu- JT = J.
- Jn = I, n bikoitia denean; Jn = J, n bakoitia denean, non n edozein zenbaki osoa den. Hortaz, J matrize inboluziogarria da; hau da, J−1 = J.
- J-ren aztarna 1 da, n bakoitia denean; eta 0 da, n bikoitia denean.
Erlazioak
aldatu- Edozein matrize A, AJ = JA betetzen duena, zentrosimetrikoa dela esaten da.
- Edozein matrize A, AJ = JAT betetzen duena, persimetrikoa dela esaten da.