Erabaki-hartzea arrisku eta ziurgabetasun egoeretan

Erabaki-hartzea arrisku eta ziurgabetasun egoeretan arrisku eta ziurgabetasun egoeretan banako batek erabakiak hartzeko garatu diren metodo eta prozedura arrazionalak biltzen ditu, erabaki-teoria kausalaren baitan. Egoera hauetan, erabaki-hartzaileak aukera zenbait ditu eta aukera bakoitzeko agertoki edo naturaren egoera zenbait izan daitezke; erabaki eta naturaren egoera bakoitzeko emaitza kuantitatibo zehatz bat izango da. Adibidez, nekazari batek garia edo artoa ereitea ditu aukeran eta aukera bakoitzeko eguraldi eguzkitsua edo hezea agertokiak izan daitezke; hartzen den erabakia (garia/artoa) eta naturaren egoera (eguzkitsua/hezea) zein diren emaitza desberdinak izango dira.

Arrisku eta ziurgabetasun egoeretan erabakia hartzen denean, erabaki-aukera bakoitzeko (artoa landatu/garia landatu), emaitza desberdinak dakartzaten naturaren-egoera zenbait (euria/eguzkia) daude.

Erabaki egokia hartzeko metodo eta prozedura zenbait garatu dira; horietako bakoitzak erabaki hartzaile arrazional baten jokabidea jasotzen du modu esplizituan. Arrisku egoeran, erabaki problemako naturaren egoera guztien probabilitateak ezagunak dira; ziurgabetasun egoeran, ordea, probabilitate horiek ez dira ezagunak eta erabaki eta naturaren egoera bakoitzeko emaitza soilik da ezaguna.

Erabaki-problemetan dituen aplikazioez gainera, erabaki-prozedura horien ikerketak estatistikara aplikatuak izan ziren Abraham Walden eskutik[1], bereziki minimax irizpidearen bitartez. Savagek baliagarritasun kontzeptua txertatu zuen ziurgabetasunezko erabaki-problemetan 1954 urtean, probabilitate subjektiboetan oinarrituta. Problema hauen ebazpen praktikoa deskribatu eta arrazionalizatzean, paradoxak eta kontraesanak sortu dira arrazionaltasun-ikuspuntu zenbaiten artean, hala nola Allaisen paradoxa eta Ellsbergen paradoxa.

Arriskua eta ziurgabetasunaAldatu

Erabaki-teorian arriskua eta ziurgabetasuna bereizi ohi dira: arrisku egoeretan naturaren egoera bakoitzeko probabilitate objektiboa ezaguna den bitartean, ziurgabetasun egoeretan probabilitate hauek ez dira ezagunak. Batzuen iritziz, ordea, arriskua eta ziurgabetasuna ez dira bereizi behar, ziurgabetasun hertsiko egoeretan erabaki-hartzaileak probabilitate subjektiboak esleitzen baitizkie naturaren egoerei.

Problemaren elementuakAldatu

  • Aukerak, erabaki hartzaileak har ditzakeen erabakien multzoa da. Aukera batek beste guztiak baztertzen ditu, hau da, erabaki hartzaileak aukera bat bakarrik erabaki behar du. Modu honetan izendatuko dira:  .
  • Naturaren egoerak, erabaki daitekeen aukera bakoitzean gerta daitezkeen agertokien multzoa:  .
  • Emaitzak, aukera eta naturaren egoera bakoitzeko erabaki-hartzaileak eskuratuko duena; oro har, emaitza positiboa dela suposatuko da, zenbat eta handiagoa, orduan eta baliagarritasun handiagoa eskuratuko dela alegia. Erabakitako aukera Ai eta suertatzen den natura-egoera Ej badira, emaitza xij da.


E1 E2 ... En
A1 x11 x12 ... x1n
A2 x21 x22 ... x2n
... ... ... ... ...
Am xm1 xm2 ... xmn

Ziurgabetasun egoeretarako irizpideakAldatu

Walden maximin irizpideaAldatu

Irizpide honetan, erabaki hartzaileak natura bere aurka jarri eta emaitza okerrena ekarriko duelako hipotesia onartzen du eta beraz, aukera bakoitzean sor daitekeen emaitza okerrena hartu eta horietatik handiena ematen dion aukera erabakitzen du. Erabateko ezkortasunari dagokion jokamoldea da.

E1 E2 E3 E4
A1 10 30 25 40
A2 50 15 20 20
A3 30 20 35 40

Adibidez, alboko taulan adierazten den erabaki-probleman, maximin irizpideari jarraiki, erabaki-hartzaileak A1 hartuta, emaitza txikiena, 10 alegia, eskuratuko duela pentsatu behar du. Halaber, A2 eta A3 erabakietarako azkenean 15 eta 20, hurrenik hurren, jasoko duela, pentsatu behar du. Azkenik, balizko emaitza ezkor horietatik, maximoa ematen diona aukeratu, 20 alegia, eta horri dagokion erabakia hartuko du: A3.

Maximax irizpideaAldatu

Maximin irizpideak aukera-multzoa erabateko ezkortasunez baloratzen duen bitartean, maximax irizpideaz erabateko baikortasunez hartzen da erabakia. Aukera bakoitzean, naturaren egoera aldekoena gauzatuko dela pentsatu, dakarren emaitza finkotzat hartu eta, hartara, emaitza maximo horietatik handiena hartuko da.

E1 E2 E3 E4
A1 10 30 25 40
A2 50 15 20 20
A3 30 20 35 40

Adibidez, maximax irizpideari jarraiki, erabaki-hartzaileak A1 hartuta, emaitza txikiena, 40 alegia, eskuratuko duela pentsatu behar du. Halaber, A2 eta A3 erabakietarako azkenean 50 eta 40, hurrenik hurren, jasoko duela, pentsatu behar du. Azkenik, balizko emaitza baikor horietatik, maximoa ematen diona aukeratu, 50 alegia, eta horri dagokion erabakia hartuko du: A2.

Hurwiczen irizpideaAldatu

Maximax (erabateko baikortasuna) eta maximin (erabateko ezkortasuna) irizpideen artean dagoen irizpidea da eta ezkortasun-maila adierazten duen α parametro baten zehazpena eskatzen du. α parametroa 0-1 balioen artean dago eta 1etik zenbat eta gertuago, orduan eta ezkortasun handiagoz jokatuko da. Parametroa hartuta, aukera bakoitzeko natura egoera posibleek dakarten baliagarritasun maximoaren (M) eta minimoaren (m) arteko batezbesteko haztatua kalkulatzen da:

 

H balio handiena duen erabaki-aukera hartu behar da.

E1 E2 E3 E4
A1 10 30 25 40
A2 50 15 20 20
A3 30 20 35 40

Adibidez,   hartzen bada:

 
 
 

Horrela, hobetsi behar den erabaki-aukera A2 da.

Savageren irizpideaAldatu

Savageren proposamenari jarraiki, naturaren egoerak kontrolatzen ez direnez, erabaki-hartzaileak naturaren egoera bakoitzeko erabaki-aukera desberdinetako emaitzak alderatzen ditu. Horrela, naturaren egoera bakoitzean erabaki-aukera hoberena ez hartzeagatik aukera-kostua kalkulatu behar da. Aukera-kostuak kalkulatuta, erabaki-aukera bakoitzeko, ezkortasunez jokatuz, aukera kostu handiena gauzatuko dela pentsatu behar du eta maximo horietatik txikiena hartuko du.


Emaitzak E1 E2 E3 E4
A1 10 30 25 40
A2 50 15 20 20
A3 40 20 35 40

Aukera-kostuak E1 E2 E3 E4
A1 40 0 10 0
A2 0 15 15 20
A3 10 10 0 0

Bigarren taulan, aukera-kostuak kalkulatzen dira. Adibidez,   gauzatuko balitz, aukera hoberena   litzateke, berari dagokio, hartara, 0 aukera-kostua;   eta   aukerek 50-10=40 eta 50-40=10 aukera-kostuak izango lituzkete. Aukera-kostuetan, erabaki-aukera bakoitzeko naturaren egoera okerrena, aukera-kostu handienekoa alegia, gertatu behar dela pentsatuz,   erabakiz gero, 40;   kasuan, 20 eta   kasuan 10 emaitzak izango dira. Horietatik, aukera kostu txikiena duena erabaki behar da:  .

Laplaceren irizpideaAldatu

Erabaki-aukera bakoitzean gauzatuko den naturaren egoeraren ezjakintasunean, indiferentzia-printzipioari jarraiki naturaren egoera guztiei probabilitate berdina eman eta erabaki-aukera baloratzeko itxaropen matematikoa (edo zuzenean, emaitza posibleen batezbestekoa) kalkulatzen da Laplaceren irizpidearen arabera. Itxaropen matematiko handiena duen erabaki-aukera hartuko da.

E1 E2 E3 E4
A1 10 30 25 40
A2 50 15 20 20
A3 30 20 35 40

Adibidez,   hartzen bada:

 
 
 

Horrela, batezbestez itxaropen handiena ematen duen erabaki-aukera A3 denez, hori hartuko da.

Arrisku egoeretarako irizpideakAldatu

Arrisku egoeretan, probabilitate zehatzak eta objektiboak esleitzen zaizkie naturaren egoera posibleei. Probabilitateen informazio gehigarriak erabaki-irizpide berriak dakartza.

  • Batezbestekoaz mugatutako bariantza txikiena, itxaropen matematikoaren balio zehatz eta finko bat gainditzen duten aukeretan bariantza eta, beraz, arrisku txikiena duen eraki-aukera hartzen da.
  • Desbideratze estandarraz mugatutako batezbestekoa, desbideratze estandarraren balio zehatz eta finko bat gainditzen ez duten aukeretan itxaropen edo batezbesteko handieneko erabaki-aukera hartzen da.
  • Sakabanatzearen irizpidea, itxaropena   eta desbideratze estandarra   izanik,   adierazpena maximotzen duen erabaki-aukera hartzen da, k erabaki-hartzaileak zehaztutako balioa izanik.
  • Probabilitate handiena, gutxieneko emaitza baten probabilitatea maximotzen duen erabaki-aukera hartzen da.

ErreferentziakAldatu

Kanpo estekakAldatu