Ireki menu nagusia
Bi dado botata suertatzen diren puntuen baturaren probabilitate banaketa: hurrengo jokaldietan denetariko emaitzak izan badaitezke ere (2,2,8,10), epe luzera batez beste itxaron daitekeen emaitza 7 da; 7 da, beraz, itxaropen matematikoa.

Itxaropen matematikoa, esperantza matematikoa edo itxarondako balioa zorizko aldagai baten batezbesteko balioa da, dagozkion probabilitateen arabera kalkulaturik. Intuitiboki, zorizko saiakuntza behin eta berriz errepikatuz epe luzera suertatuko litzatekeen emaitzen batez besteko balioa da, epe luzera itxaron edo espero daitekeen batez besteko emaitza alegia.

Estatistikan maiz erabiltzen den kontzeptua da: probabilitate-banaketa bateko ezaugarri jakingarrienetako bat da, parametro ezezagun gisa hartzen dena eta datuetan baliokide duen batezbesteko aritmetiko sinplearen bitartez zenbatesten dena. Matematikan, neurri-teoriatik formulazio matematiko zorrotza du eta, aldi berean, maiz erabiltzen da problema aplikatuetan, hala nola ekonomia arloko erabakien azterketan. Zorizko jokoetan ere maiz kalkulatzen da, jokalari batek jokaldi bateko batezbesteko emaitza jakiteko. Erabaki eta jokoen eremu horietako paradoxa zenbaitetan ere agertzen da, hala nola San Petersburgo paradoxan eta Allaisen paradoxan. Halaber, baliteke mutur luzeak dituzten probabilitate banakuntzetan ez existitzea.

Eduki-taula

Kalkulua probabilitate banaketa diskretu baterakoAldatu

Bedi   zorizko aldagaiak hartzen dituen balio ezberdin guztien multzoa. Itxaropen matematikoa honela kalkulatzen da:


 

AdibideaAldatu

Bi dado bota eta puntuen baturaren itxaropen matematikoa honela kalkulatzen da. arestiko formulan adierazten den bezala x (puntuazioak) eta p(x) (probabilitateak) hurrenik hurren bidertuz eta emaitzak batuz:

x 2 3 4 5 6 7 8 9 10 11 12 batura
p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 1
xp(x) 2/36 6/36 12/36 20/36 30/36 42/36 40/36 36/36 30/36 22/36 12/36 252/36=7

Ondorioz, bi dado botata, puntuazioen itxaropen matematikoa 7 da.

Kalkulua probabilitate banaketa jarraitu baterakoAldatu

 
Irudiko dentsitate-funtzioan probabilitate gehiena 0tik gertuko balioetan biltzen da eta gutxiena 3tik gertu. Beraz, itxaropen matematikoa gertuago dago 0tik 3tik baino: E[X]=1.

Bitez   zorizko aldagaiak hartzen duen balioen tartea eta f(x) probabilitate banaketa definitzen duen dentsitate-funtzioa. Itxaropen matematikoa honela kalkulatzen da:

 

AdibideaAldatu

Likido batean litroko dagoen substantzia-kopurua (mg) probabilitate-banaketa honen araberakoa da (ikus alboko irudia):

 

Honela kalkulatzen da itxaropena:

 

Itxaropen matematikoaren propietateakAldatu

Aldagai aldaketa linealaAldatu

X zorizko aldagaia izanik, Y=aX+b aldagai aldaketa lineala egiten bada:

 


Zorizko aldagaien baturaAldatu

X1, X2, ...,Xn zorizko aldagaiak izanik, horien baturaren itxaropena horien itxaropenen batura da:

 

Kanpo loturakAldatu