Matrize zabaldu

Aljebra linealean, beste matrize batetik zutabeak erantsiz lortzen den matrizea; esaterako, aldagaien koefizienteez gain, zutabe gehigarri batean ekuazioen gai konstanteak ere jasotzen dituena.

Aljebra linealean, matrize baten matrize zabaldua beste matrize bat da, matrize hartatik zutabeak erantsiz lortzen dena. Esaterako, izan bitez eta bi matrize hauek:

Orduan matrize zabaldua honela adierazten da:

Matrize baten alderantzizkoa kalkulatzeko erabilgarria da.

AdibideaAldatu

Izan bedi   2x2 dimentsioko matrize karratu hau:  

  matrizearen alderantzizkoa kalkulatzeko,   sortzen da, non   2x2 dimentsioko identitate matrizea den. Gero,   matrizearen  -ren zatia identitate matrize bihurtu behar da, matrizeen oinarrizko bihurtze teknikak soilik erabiliz.

 

 


Matrize zabaldua Gaussen ebazpen metodoan eta matrize karratuen bidez emandako ekuazio linealen sistemen ebazpenean ere erabiltzen dira, besteak beste. Kasu horretan, Matrize zabalduak, aldagaien koefizienteez gain, zutabe gehigarri batean ekuazioen gai konstanteak ere jasotzen ditu.

AdibideaAldatu

 

  eta   konbinatuz matrize zabaldua hau da:  

Kanpo estekakAldatu