Mekanika kuantiko

Teoria kuantiko» orritik birbideratua)

Fisikan, mekanika kuantikoa (mekanika ondulatorio bezala ere ezaguna), materiaren portaera azaltzen duen fisikaren adar nagusietako bat da. Bere aplikazio eremuak, unibertsala izan nahi du, baina oso txikiaren munduan lortzen du bere iragarpenak, fisika klasikoak dioenaren erabat ezberdinak izatea.

Mekanika kuantikoa, fisikaren adar nagusietako azkena da. XX. mende hasieran hasten da, unibertsoa azaltzen saiatzen ziren bi teoria, grabitazio unibertsalaren legea eta teoria elektromagnetiko klasikoa, zenbait fenomeno azaltzeko nahiko izan ez zirenean. Teoria elektromagnetikoak, arazo bat sortzen zuen orekan zegoen edozein objekturen erradiazio igorpena azaltzen saiatzen zenean, erradiazio termiko deituriko erradiazioa, osatzen duten partikulen kitzikapen mikroskopiotik datorrena dena. Orain bai, elektrodinamika klasikoaren ekuazioak erabiliz, erradiazio termiko honek igortzen zuen energiak, infinitu ematen zuen, objektuak igortzen zituen maiztasun guztiak batuz gero, fisikarientzako batere logikoa ez zen emaitza.

Mekanika estatistikoaren barnean sortu ziren ideia kuantikoak 1900ean. Louis de Brogliek, partikula material bakoitzak, uhin-luzera bat duela proposatu zuen, bere masarekiko alderantzizko proportzioan lotua (momentum deitu zuen), eta bere abiaduragatik emana. Max Planck fisikariari, trikimailu matematiko bat bururatu zitzaion: prozesu aritmetikoan, maiztasun horien integrala, batuketa ez jarrai bategatik aldatzen bazen, emaitza bezala, jada ez zen infinitua lortzen, eta, beraz, arazoa ezabatzen zen, eta, gainera, lortutako emaitza, ondoren neurtua zenarekin bat zetorren. Max Planck izan zen, orduan, erradiazio elektromagnetikoa, materiak, argi kuanto edo energia fotoi eran konstante estatistiko baten bidez xurgatu eta igortzen zuela zioen hipotesia adierazi zuena, konstante hori, Plancken konstantea deitua izan zelarik. Bere historia, XX. mendearekin lotua dago, fenomeno baten lehen formulazio kuantikoa, 1900eko abenduaren 14an, Berlingo Zientzia Akademiako Elkarte Fisikoaren sekzio batean ezagutzera eman baitzuen Max Planckek.

Plancken teoria, hipotesi soilean geratuko zen urte askoz, Albert Einsteinek berriz hartu ez balu, argia, baldintza batzuetan, energia partikula independente bezala aritzen dela proposatuz (argi kuantoak edo fotoiak). Albert Einstein izan zen, 1905ean, zegozkion mugimendu legeak osatu zituena bere erlatibitate bereziaren teoriarekin, elektromagnetismoa, funtsean teoria ez mekanikoa zela frogatuz. Honela amaitzen zuen, fisika klasikoa deitua izan dena, hau da, fisika ez kuantikoa. Berak, heuristiko deitu zuen ikuspuntu hau, bere efektu fotoelektrikoaren teoria garatzeko. Hipotesi hau 1905ean argitaratu zuen, eta, honekin, 1921ean, fisikako Nobel saria lortu zuen. Hipotesi hau, bero zehatzari buruzko teoria bat proposatzeko ere aplikatu zen, hau da, gorputz baten masa unitatearen tenperatura unitate batean gehitzeko behar den bero kopurua zein den ebazten duena.

Partikula osatzaileen abiadurak, ez du oso altua, edo argiaren abiaduratik gertukoa izan behar.

Mekanika kuantikoak, une horretarainoko fisikaren edozein paradigma hausten du. Berarekin, mundu atomikoak, espero genukeen bezala ez duela jokatzen ikusten da. Ziurgabetasun, zehatzgabetasun eta kuantizazio kontzeptuak, lehen aldiz, hemen sartuak dira. Gainera, mekanika kuantikoa egundaino egin diren iragarpen esperimentalik zehatzenak eman dituen teoria zientifikoa da, balizkotasunaren mende dagoen arren.

Garapen historikoa

aldatu

Artikulu nagusia: Mekanika kuantikoaren historia

Teoria kuantikoa, bere oinarrizko forman, XX. mendearen lehen erdian zehar garatua izan zen. Energia, modu diskretoan elkartrukatzea, "lehenagoko" tresna teorikoak ziren mekanika klasikoak eta elektrodinamikak azal ezin zitzaketen honako hauek bezalako ekintza esperimentalekin nabarmendu zen:

  • Gorputz beltzaren erradiazioaren espektroa, Max Planckek ebatzia energiaren kuantizazioarekin. Ikusi ahal izan zenez, gorputz beltzaren energia osoak, balio diskretuak hartzen zituen, jarraikakoak baino gehiago. Fenomeno hau, kuantizazio deitu zen, eta balio diskretuen arteko tarte posiblerik txikienak, quanta deituak dira (singularrean "quantum", kantitatea esan nahi duen latinezko hitzetik, hortik mekanika kuantiko izena). Kuantu baten tamaina, balio finko bat da, Plancken konstantea deitua, eta segundoko 6.626 ×10^-34 julio balio du.
  • Zenbait baldintza esperimentalpean, objektu mikroskopikoek, atomoek eta elektroiek kasu, portaera ondulatorio bat erakusten dute, interferentzian bezala. Beste baldintza batzuetan, objektu berberek, portaera korpuskularra edo partikula erakoa erakusten dute, partikulen sakabanatzean bezala. Fenomeno hau, uhin-partikula dualtasuna bezala ezagutzen da.
  • Lotutako historiak dituzten objektuen propietate fisikoak, edozein teoria klasikok debekatutako zabaltasun batean elkarlotuak izan daitezke, halako zabaltasun batean, biei batera erreferentzia eginik bakarrik deskriba daitezkeela. Fenomeno hau, elkarlotze kuantikoa da, eta Bellen ezberdintasunak, ohiko elkarlotzearekin duen ezberdintasuna deskribatzen du. Bellen ezberdintasunaren bortxatzeen neurriak, mekanika kuantikoaren frogatze handienetako bat izan ziren.
  • Efektu fotoelektrikoaren azalpena, Albert Einsteinek emana, non energia kuantizatzeko behar "misteriotsu" hori berriz agertu zen.
  • Compton efektua

Teoriaren garapen formala, garaiko zenbait fisikari eta matematikariren elkarren arteko ahalegin bateratuen ondorio izan zen, Erwin Schrödinger, Paul Dirac, Albert Einstein, Werner Heisenberg, Niels Bohr eta John von Neumann kasu. Teoriaren funtsezko aldeetako batzuk, oraindik aktiboki aztertuak izaten ari dira. Mekanika kuantikoa, fisika eta kimikaren zenbait arloren atzean dagoen teoria bezala ere onartu da, horien artean materia kondentsatuaren fisika, kimika kuantikoa eta partikulen fisika.

Mekanika kuantikoaren jatorri geografikoa, Europa erdialdean aurki daiteke, Alemania eta Austrian, eta XX. mendeko lehen herenaren testuinguru historikoan.

Suposiziorik garrantzitsuenak

aldatu

Artikulu nagusia: Mekanika kuantikoaren interpretazioak

Teoria honen suposiziorik garrantzitsuenak honako hauek dira:

  • Energia ez da magnitude jarraitu baten gisan trukatzen, modu diskretuan baizik, hau da, kantitate minimo bat dago: kuantua (energiaren kuantizazioa).
  • Partikula baten posizioa eta momentua zehaztea ezinezkoa denez, ibilbide kontzeptuari uko egiten zaio, mekanika klasikoan funtsezkoa dena. Horren ordez, partikula baten mugimendua, espazioko puntu bakoitzari eta une bakoitzari, aipaturiko partikula, une horretan eta posizio horretan egoteko probabilitatea ematen dion funtzio matematiko baten araberakoa da (behintzat, Mekanika kuantikoaren interpretaziorik ohikoenean, probabilistikoa edo Kopenhageko interpretazioa deritzona). Funtzio horretatik, uhin-funtzioa deritzona, teorikoki, behar diren mugimendu magnetiko guztiak lortzen dira.

Teoriaren egitura formala ondo garatua dagoen arren, eta bere emaitzak, esperimentuekin bat datozen arren, ez da gauza bera gertatzen bere interpretazioarekin, oraindik eztabaidatua dena.

Teoriaren deskribapena

aldatu

Mekanika kuantikoak, sistema baten uneko egoera (egoera kuantikoa), neurgarri edo behagarri diren propietate guztien probabilitate banaketa kodetzen duen uhin funtzio batekin deskribatzen du. Sistema jakin baten gaineko balizko behagarri batzuk, energia, posizioa, momentua eta momentu angeluarra dira. Mekanika kuantikoak ez die balio zehatzik ematen behagarriei, baizik eta bere probabilitate banaketari buruzko iragarpenak egiten dituela. Materiaren propietate ondulatorioak, uhin funtzioen interferentziagatik azaltzen dira.

Uhin funtzio hauek, aldatu egin daitezke denboraren igaroan. Eboluzio hau determinista da sistemagan neurririk egiten ez bada, baina, egiten baldin bada, eboluzio hau estokastikoa da eta uhin funtzioaren kolapsoaren bidez gertatzen da (Mekanika kuantikoaren IV. adierazpena). Adibidez, espazio hutsean interferentziarik gabe mugitzen den partikula bat, uhin funtzio baten bidez deskriba daiteke, tarteko posizioren baten inguruan zentratutako uhin talde bat dena. Denbora pasa ahala, talde horren erdialdea, beste toki batera mugi daiteke, aldatu, eta, partikulak, beraz, beste toki zehatzago batean kokatua dirudi. Uhin funtzioen eboluzio tenporal determinista, Scrödingerren ekuazioak deskribatzen du.

Uhin funtzioren batzuk denboran konstanteak diren probabilitate banaketadun egoera fisikoak deskribatzen dituzte, egoera hauei estazionario deritze, hamiltoniar operatzailearen egoera propioak dira, eta ondo definitutako energia bat dute. Mekanika klasikoan dinamikoki tratatuak ziren sistema asko uhin funtzio estatiko hauen bidez deskribatzen dira. Adibidez, elektroi bat kitzikatu gabeko atomo batean klasikoki nukleoa inguratzen duen partikula bat bezala marrazten da, mekanika kuantikoan nukleoa inguratzen duen probabilitate estatikoko laino baten bidez deskribatua den bitartean.

Sistemaren behagarri batean neurketa bat egiten denean, uhin funtzioa, behagarriaren beraren egoera propio edo funtzio propio deritzon funtzio multzoaren zati bihurtzen da. Prozesu hau uhin funtzioaren kolapsoa bezala ezagutzen da. Kolapso horren probabilitate erlatiboak egoera propio posibleetako batekiko uneko uhin funtzioak deskribatzen ditu, murriztearen aurreko unean. Aurreko adibidea hutsean dagoen partikulari buruz kontutan hartuz, partikula horren posizioa neurtzen bada, x balio aurresanezin bat lortuko da. Oro har ezinezkoa da ze x balio zehatz lortuko den, baina baliteke uhin multzoaren erdigunetik gertuko bat lortzea, uhin funtzioaren anplitudea handia den. Neurtu ondoren, partikularen uhin funtzioa kolapsatu egiten da eta behatutako x posizioaren inguruan oso kontzentratua dagoen batera murrizten da.

Schrödingerren ekuazioa neurri batean determinista da, hasierako denbora baterako uhin funtzio batean, ekuazioak ondorengo edozein unetan ze funtzio izango den aurreikuspen zehatz bat emango duenaren zentzuan. Neurketa batean, funtzioak kolapsatzen duen eigen-egoera probabilista da, eta arlo honetan ez da determinista. Eta, beraz, mekanika kuantikoaren izaera probabilista neurketatik sortzen da.

Kanpo estekak

aldatu