Ireki menu nagusia

Bigarren mailako ekuazio

Gorputzen erorketa mugimenduetan, lurrera heldu arte igaroko den denbora kalkulatzeko, bigarren mailako ekuazio bat ebatzi behar da.[1]

Matematikan, aldagai bakarreko bigarren mailako ekuazioa edo ekuazio koadratikoa [2], era osoan, honela adierazten den aldagai bakarreko ekuazio polinomiko bat da[3]:

Ekuazioa ebaztean, ezezaguna den x aldagaiaren balioa zehaztea da helburua, hau da, ekuazioaren erroak edo soluzioak ateratzea, a, b eta c zenbakizko konstanteak izanik. Konstante hauei koefiziente deritze. Definizioz, bigarren mailako ekuazioan a ≠ 0 bete behar da, bestela lehenengo mailako ekuazio bat izango bailitzateke. a=1 betetzen denean, x2+bx+c=0 ekuazioetan alegia, ekuazio koadratikoa monikoa dela esaten da [4].

Bigarren mailako ekuazio osatugabeak ere badaude [5], baina agertzen ez diren koefizienteak 0 bihurtuz aise aldatzen dira adierazpen orokorrera:

Bigarren mailako ekuazioek aplikazio zabalak dituzte zientzian, hala-nola fisikan, azeleraziozko mugimenduen aztertzeko [3].

EbazpenaAldatu

Bigarren mailako ekuazio osoaren ebazpen edo soluzioa formula honek ematen du:

  ,

"±" ikurraren bitartez bi balio hauek soluzio direla adierazten da:

  eta  

  betetzen denean, aurreko bi soluzioak berdinak dira:  .

GeometriaAldatu

 
Irudiko
f (x) = x2x − 2 = (x + 1)(x − 2) funtzio koadratikoan, funtzioak x abzisa-ardatza ebakitzen dueneko puntuak, x = −1 and x = 2 alegia, x2x − 2 = 0 bigarren mailako ekuazioaren soluzioak dira.

Bigarren mailako ekuazioaren soluzioak a, b eta c zenbaki errealak badira funtzio koadratikoaren zeroak dira, aipaturiko funtzioak 0 balioa hartzen dueneko x puntuak alegia:

 

DiskriminatzaileaAldatu

Diskriminatzailea honako adierazpen honen balioa da (delta izeneko letra maiuskula grekoaz adierazten da):

 

Bigarren mailako ekuazio batek, koefizienteak zenbaki errealak izanik, soluzio erreal bat edo bi izan dezake ala bi erroak irudikari edo konplexuak dira. Erro edo soluzioen kopurua eta izaera diskriminatzaileak hartzen duen balioa aztertuz jakiten da [6] :

  • Diskriminatzailea positiboa bada, bi soluzioak zenbaki erreal dira. Diskriminatzailea zenbaki karratu edo karratu perfektua bada, bi soluzioak zenbaki arrazionalak direla egiaztatzen da.
  • Diskriminatzailea 0 bada, soluzioa bakarra da eta gainera zenbaki erreala:  .
  • Diskriminatzailea negatiboa bada, ez dago erro errealik eta bi soluzioak zenbaki konplexuak dira eta bata bestearen zenbaki konplexu konjugatu dira.
 
Diskriminatzailearen zeinua zein den, bigarren mailako ekuazioaren erroen kopurua eta izaera ezberdina da:
<0: x2+12
=0: −43x2+43x13
>0: 32x2+12x43

Ebazpena osatu gabeko ekuazioetanAldatu

Ebazpen orokorrak baliozkoa da osatu gabeko ekuazioetarako, agertzen ez diren koefizienteak 0 bihurtuz. Dena den, ekuazio hauetarako ebazpen bereziak ere eman daitezke [7]:

  •   motako ekuazioaren erroak hauek dira:
 
  •   motako ekuazioaren erroak hauek dira:
 
  •   motako ekuazioaren erroa hau da:  .

FaktorizazioaAldatu

Bigarren mailako ekuazio bat ebatzita, bi soluzioak hartzen badira (ikus Ebazpena, artikulu honetan bertan), honela faktoriza daiteke ekuazioa:

 

Soluzioa bakarra bada, honela faktorizatzen da:

 

Osatu gabeko ekuazioak honela faktorizatzen dira:

  •  
  •  
  •  

Maila handiagoko ekuazioakAldatu

  motako ekuazioak   bigarren mailako ekuazioen ebazpena erabiliz ebaz daitezke,   aldagai aldaketa baten bitartez. Adibidez,   ekuazio bikoadratikoa honela ebazten da[3]:

 

Bigarren mailako ekuazioko   askatuz:

 

Eta aldagai aldaketa deseginez:

 

Hori horrela, ekuazio bikoadratikoak lau soluzio ezberdin ditu.

Ekuazio irrazionalakAldatu

Ekuazio irrazionaletan ezezaguna errokizun baten barnean agertzen da, besteak beste. Batzuetan, berreketak eginez, bigarren mailako ekuazio batera heltzen da[3]. Adibidez,

 

Erroketa isolatuz eta karratua kalkulatuz, bigarren mailako ekuazio batera heltzen da:

 
 

Ebazpena ohizko formulaz egiten da.

Ebazpen metodoakAldatu

Karratuaren osaketaAldatu

Karratuaren osaketa delako teknika aljebraikoaz,   trinomioa   erako adierazpenaz ordezten da. Horrela,   ezezaguna aise bakantzen da.

  •   ekuaziotik abiatuz, a koefizienteaz zatitzen da lehendabizi:
 
 
  • Trinomio karratu perfektoa sortzeko ezker aldean,   konstantea gehitzen ekuazioaren alde bietan:
 
 
 
  • Erro karratua hartuz alde bietan eta gaiak lekuz aldatuz, ekuazioaren soluziora heltzen da:
 
 
 
 
 

Koefizienteen eta erroen arteko erlazioakAldatu

  ekuazioko   koefizienteen eta ekuazioaren   erro edo soluzioen artean berdintza erlazio hauek egiaztatzen dira, Vièteren formulei esker:

 

Erlazio hauek honela froga daitezke:

 

Beraz,

 

Eta, azkenik,

 

Ebazpenerako formula alternatibo batAldatu

  ekuazioa   monomioaz zatituz hasiera batean, ebazpenerako beste formula bat lortzen da, karratuaren osaketa garatuz:

 

Eta azken berdintzatik bigarren mailako ekuazioaren erroen formula alternatiboa lortzen da:

 .

ErreferentziakAldatu

Wikimedia Commonsen badira fitxategi gehiago, gai hau dutenak: Bigarren mailako ekuazio  


  1. (Gaztelaniaz) Movimiento de caída de los cuerpos, Física con ordenador, Curso Interactivo de Física en Internet, Ángel Franco García. 2009-05-28.
  2. Euskalterm Terminologia Banku Publikoak bi terminoak biltzen ditu. 2009-05-27.
  3. a b c d Bigarren mailako ekuazioak, Hiru.com webgunean. 2009-05-27.
  4. Monic Polynomial, Wolfram Mathworld. 2009-05-29.
  5. Osatugabeak ax²+c=0, ax²+bx=0, "Descartes" webgunean. Ministerio de Educación. Gobierno de España. 2009-05-27.
  6. Diskriminatzailea eta ebazpenak, "Descartes" webgunean. Ministerio de Educación. Gobierno de España. 2009-05-27.
  7. (Gaztelaniaz) Ecuaciones de segundo grado incompletas, Kalipedia, Santillana. 2009-05-28.