«Baliokidetasun-erlazio»: berrikuspenen arteko aldeak

Erreferentziak txertatu, idazkeran aldaketak
(Erreferentziak txertatu, idazkeran aldaketak)
 
== Idazkera ==
<math>A</math> multzoko <math>xa</math> eta <math>yb</math>-ren arteko baliokidetasun-erlazioa <math>a\sim b</math> edo <math>a\equiv b</math> moduetan idazten da erlazioa definiturik badago eta <math>a\sim_R b</math>, <math>a\equiv_R b</math> edo <math>a \mathcal{R} b</math>, hala ez bada.
 
<math>A</math> multzoan ezarritako <math>\sim</math> baliokidetasun-erlazioa, <math>(A,\sim)\,</math> [[bikote ordenatu]]aren bidez adierazten da.
 
[[Aritmetika modular|Aritmetika modularrean]] <math> xa \equiv yb (mod \mathcal{R} )</math> (<math>xa</math> baliokide <math>yb</math> modulu <math>\mathcal{R}</math>) bezala adierazten da.
 
== Baliokidetasun klasea ==
{{Matematika-erlazioak}}
 
== Erreferentziak ==
* Brown, Ronald, 2006. ''[http://arquivo.pt/wayback/20160514115224/http://www.bangor.ac.uk/r.brown/topgpds.html Topology and Groupoids.]'' Booksurge LLC. <nowiki>ISBN 1-4196-2722-8</nowiki>.
* Castellani, E., 2003, "Symmetry and equivalence" in Brading, Katherine, and E. Castellani, eds., ''Symmetries in Physics: Philosophical Reflections''. Cambridge Univ. Press: 422-433.
* Robert Dilworth and Crawley, Peter, 1973. ''Algebraic Theory of Lattices''. Prentice Hall. Chpt. 12 discusses how equivalence relations arise in lattice theory.
* Higgins, P.J., 1971. ''[http://www.emis.de/journals/TAC/reprints/articles/7/tr7abs.html Categories and groupoids.]'' Van Nostrand. Downloadable since 2005 as a TAC Reprint.
* John Randolph Lucas, 1973. ''A Treatise on Time and Space''. London: Methuen. Section 31.
* Rosen, Joseph (2008) ''Symmetry Rules: How Science and Nature are Founded on Symmetry''. Springer-Verlag. Mostly chpts. 9,10.
* Raymond Wilder (1965) ''Introduction to the Foundations of Mathematics'' 2nd edition, Chapter 2-8: Axioms defining equivalence, pp 48–50, John Wiley & Sons.
[[Kategoria:Multzo-teoria]]
[[Kategoria:Matematika-erlazioak]]
11

edits