Izan bitez
(
K
,
+
,
⋅
)
{\displaystyle (K,+,\cdot )}
eta
V
{\displaystyle V}
multzoa, orduan
V
K
{\displaystyle VK}
-espazio bektoriala da baldin eta solik baldin:
(
V
,
+
)
{\displaystyle (V,+)}
Talde abeldarra da, hau da, multzoak gehiketa aplikazioa definituta du, taldearen elementu neutroa
0
V
{\displaystyle 0_{V}}
denotatuko dugu.
Kanpo aplikazioa (eragiketa) existitzen da:
⋅
:
K
×
V
→
V
(
k
,
v
)
→
k
⋅
v
{\displaystyle {\begin{aligned}\cdot :K\times V\to V\\(k,v)\to k\cdot v\\\end{aligned}}}
(eskalar eta bektore arteko biderketa) Gorputzeko elementuak eskalarrak deritze eta
V
{\displaystyle V}
-ko elementuak bektore, kanpo aplikazioak betetzen dituen propietateak hurrengoak dira:
Banatze propietatea eskalarren gehiketarekiko:
∀
k
1
,
k
2
∈
K
,
∀
v
∈
V
:
(
k
1
+
k
2
)
⋅
v
=
k
1
⋅
v
+
k
2
⋅
v
{\displaystyle \forall k_{1},k_{2}\in K,\forall v\in V:(k_{1}+k_{2})\cdot v=k_{1}\cdot v+k_{2}\cdot v}
Banatze propietatea bektoreen gehiketarekiko:
∀
v
1
,
v
2
∈
V
,
∀
k
∈
K
:
(
v
1
+
v
2
)
⋅
k
=
v
1
⋅
k
+
v
2
⋅
k
{\displaystyle \forall v_{1},v_{2}\in V,\forall k\in K:(v_{1}+v_{2})\cdot k=v_{1}\cdot k+v_{2}\cdot k}
Elkartze propietatea:
∀
k
1
,
k
2
∈
K
,
∀
v
∈
V
:
k
1
(
k
2
⋅
v
)
=
(
k
1
⋅
k
2
)
⋅
v
{\displaystyle \forall k_{1},k_{2}\in K,\forall v\in V:k_{1}(k_{2}\cdot v)=(k_{1}\cdot k_{2})\cdot v}
Bektorea eta gorputzeko biderketarekiko elementu neutroaren arteko produktua bektore bera da:
∀
v
∈
V
:
v
⋅
1
K
=
v
{\displaystyle \forall v\in V:v\cdot 1_{K}=v}
Z
{\displaystyle \mathbb {Z} }
ez da
Q
{\displaystyle \mathbb {Q} }
-espazio bektoriala zeren, nahiz eta
(
Z
,
+
)
{\displaystyle (\mathbb {Z} ,+)}
talde abeldarra izan, adibidez bektore moduan 3 zenbakia hartzen badugueta eskalar moduan 1/2, bektore bider eskalar produktua ez dago multzo barruan, hau da, 1.5 ez da zenbaki osoa.
Ostean,
Q
{\displaystyle \mathbb {Q} }
-
Q
{\displaystyle \mathbb {Q} }
-espazio bektoriala da, baita
Q
2
{\displaystyle \mathbb {Q} ^{2}}
Q
{\displaystyle \mathbb {Q} }
espazio bektoriala da.
Beraz
(
K
,
+
,
⋅
)
{\displaystyle (K,+,\cdot )}
gorputza izanik,
K
n
{\displaystyle K^{n}}
K
{\displaystyle K}
espazio bektoriala da.
Espazio bektorialak:
Q
n
{\displaystyle \mathbb {Q} ^{n}}
Q
{\displaystyle \mathbb {Q} }
espazio bektoriala da,
R
n
{\displaystyle \mathbb {R} ^{n}}
R
{\displaystyle \mathbb {R} }
espazio bektoriala da,
C
n
{\displaystyle \mathbb {C} ^{n}}
C
{\displaystyle \mathbb {C} }
espazio bektoriala da.
Propietate gehiago:
aldatu
V
{\displaystyle V}
K
{\displaystyle K}
espazio bektoriala bada:
(
i
)
{\displaystyle (i)}
∀
k
∈
K
:
k
⋅
0
V
=
0
V
{\displaystyle \forall k\in K:k\cdot 0_{V}=0_{V}}
Badakigu
0
V
=
0
V
+
0
V
{\displaystyle 0_{V}=0_{V}+0_{V}}
orduan
k
⋅
0
V
=
k
⋅
(
0
V
+
0
V
)
=
k
⋅
0
V
+
k
⋅
0
V
⟹
k
⋅
0
V
=
k
⋅
0
V
+
k
⋅
0
V
{\displaystyle k\cdot 0_{V}=k\cdot (0_{V}+0_{V})=k\cdot 0_{V}+k\cdot 0_{V}\Longrightarrow k\cdot 0_{V}=k\cdot 0_{V}+k\cdot 0_{V}}
eta adierazpena sinplifikatuz
0
V
=
k
⋅
0
V
{\displaystyle 0_{V}=k\cdot 0_{V}}
(
i
i
)
{\displaystyle (ii)}
∀
v
∈
V
:
v
⋅
0
K
=
0
V
{\displaystyle \forall v\in V:v\cdot 0_{K}=0_{V}}
Badakigu
0
K
=
0
K
+
0
K
{\displaystyle 0_{K}=0_{K}+0_{K}}
orduan
v
⋅
0
K
=
v
⋅
(
0
K
+
0
K
)
=
v
⋅
0
K
+
v
⋅
0
K
⟹
v
⋅
0
K
=
v
⋅
0
K
+
v
⋅
0
K
{\displaystyle v\cdot 0_{K}=v\cdot (0_{K}+0_{K})=v\cdot 0_{K}+v\cdot 0_{K}\Longrightarrow v\cdot 0_{K}=v\cdot 0_{K}+v\cdot 0_{K}}
eta adierazpena sinplifikatuz
0
V
=
v
⋅
0
K
{\displaystyle 0_{V}=v\cdot 0_{K}}
(
i
i
i
)
{\displaystyle (iii)}
k
⋅
v
=
0
V
⟺
k
=
0
K
e
d
o
v
=
0
V
{\displaystyle k\cdot v=0_{V}\Longleftrightarrow k=0_{K}edov=0_{V}}
⟹
{\displaystyle \Longrightarrow }
Demagun
k
∈
K
−
{
0
K
}
{\displaystyle k\in K-\{0_{K}\}}
dela, orduan existitzen da eskalarraren alderantzizkoa
k
−
1
{\displaystyle k^{-1}}
, orduan
k
⋅
v
=
0
V
{\displaystyle k\cdot v=0_{V}}
adierazpenean biderkatuz:
(
k
−
1
⋅
k
)
⋅
v
=
k
−
1
⋅
0
V
⟹
1
K
⋅
v
=
0
V
⟹
v
=
0
V
{\displaystyle (k^{-1}\cdot k)\cdot v=k^{-1}\cdot 0_{V}\Longrightarrow 1_{K}\cdot v=0_{V}\Longrightarrow v=0_{V}}
⟸
{\displaystyle \Longleftarrow }
Frogatuta dago
(
i
)
{\displaystyle (i)}
eta
(
i
i
)
{\displaystyle (ii)}
-n.
(
i
v
)
{\displaystyle (iv)}
−
v
=
(
−
1
K
)
⋅
v
,
∀
v
∈
V
{\displaystyle -v=(-1_{K})\cdot v,\forall v\in V}
Mugitu adierazpenean bektorea eskumara:
0
V
=
v
+
(
−
1
K
)
⋅
v
{\displaystyle 0_{V}=v+(-1_{K})\cdot v}
, badakigu
v
=
(
1
K
)
⋅
v
,
∀
v
∈
V
{\displaystyle v=(1_{K})\cdot v,\forall v\in V}
, ordezkatu:
(
1
K
)
⋅
v
+
(
−
1
K
)
⋅
v
=
0
V
{\displaystyle (1_{K})\cdot v+(-1_{K})\cdot v=0_{V}}
banatze propietatea erabiliz:
v
⋅
(
1
K
−
1
K
)
=
0
V
{\displaystyle v\cdot (1_{K}-1_{K})=0_{V}}
eta badakigu
1
K
−
1
K
=
0
K
{\displaystyle 1_{K}-1_{K}=0_{K}}
beraz
v
⋅
(
1
K
−
1
K
)
=
v
⋅
(
0
k
)
=
0
V
{\displaystyle v\cdot (1_{K}-1_{K})=v\cdot (0_{k})=0_{V}}
(
v
)
{\displaystyle (v)}
u
+
w
=
v
+
w
⟹
u
=
v
{\displaystyle u+w=v+w\Longrightarrow u=v}
(
v
i
)
{\displaystyle (vi)}
0
v
=
0
,
∀
v
∈
V
{\displaystyle 0v=0,\forall v\in V}
(
v
i
i
)
{\displaystyle (vii)}
λ
0
=
0
,
∀
λ
∈
K
{\displaystyle \lambda 0=0,\forall \lambda \in K}
(
v
i
i
i
)
{\displaystyle (viii)}
(
−
λ
)
v
=
−
λ
v
,
∀
λ
∈
K
{\displaystyle (-\lambda )v=-\lambda v,\forall \lambda \in K}
eta
∀
v
∈
K
{\displaystyle \forall v\in K}
(
i
x
)
{\displaystyle (ix)}
λ
v
=
0
⟺
λ
=
0
{\displaystyle \lambda v=0\Longleftrightarrow \lambda =0}
edo
v
=
0
{\displaystyle v=0}
(
x
)
λ
v
=
μ
v
{\displaystyle (x)\lambda v=\mu v}
eta
v
≠
0
⟹
λ
=
μ
{\displaystyle v\neq 0\Longrightarrow \lambda =\mu }
(
x
i
)
{\displaystyle (xi)}
λ
v
=
λ
w
{\displaystyle \lambda v=\lambda w}
eta
λ
≠
0
⟹
v
=
w
{\displaystyle \lambda \neq 0\Longrightarrow v=w}
Kanpo estekak
aldatu