Sei funtzio trigonometrikoetakik, ez dago bat bera ere ez bijektiboa dena. Horrek esan nahi du balio asko "errepikatuta" daudela. sin(90º)=0 , baina sin(270º)=0 , eta sin(440º)=0 ere. Beraz, zein da sin(x)=0 -ren emaitza? 90º? 270º?
Ziurtasun eza hori saihesteko, funtzioaren eremua mugatu behar dugu. Alderantzizko funtzioak definitzean, sinu funtzioaren zati txiki bat besterik ez dugu erabiltzen, bijektiboa izan dadin. Beraz, alderantzizko funtzioen ibilbidearen (eta, beraz, jatorrizko funtzioen domeinuaren) azpimultzo arbitrario bat erabiltzen: adar nagusia . Lortzen dugun balioari, hortaz, balio nagusi deritzo.
Alderantzizko funtzioen adar nagusiak taula honetan ageri dira:
Izena
Ohiko adierazpena
Definizioa
Eremu erreala
Balio nagusi ohikoenak (radianak )
Balio nagusi ohikoenak (graduak )
arkosinua
y
=
arcsin
(
x
)
{\displaystyle y=\arcsin(x)}
x = sin (y )
−
1
≤
x
≤
1
{\displaystyle -1\leq x\leq 1}
−
π
2
≤
y
≤
π
2
{\displaystyle -{\frac {\pi }{2}}\leq y\leq {\frac {\pi }{2}}}
−
90
∘
≤
y
≤
90
∘
{\displaystyle -90^{\circ }\leq y\leq 90^{\circ }}
arkokosinua
y
=
arccos
(
x
)
{\displaystyle y=\arccos(x)}
x = cos (y )
−
1
≤
x
≤
1
{\displaystyle -1\leq x\leq 1}
0
≤
y
≤
π
{\displaystyle 0\leq y\leq \pi }
0
∘
≤
y
≤
180
∘
{\displaystyle 0^{\circ }\leq y\leq 180^{\circ }}
arkotangentea
y
=
arctg
(
x
)
{\displaystyle y=\operatorname {arctg} (x)}
x = tg (y )
zenbaki errealak
−
π
2
<
y
<
π
2
{\displaystyle -{\frac {\pi }{2}}<y<{\frac {\pi }{2}}}
−
90
∘
<
y
<
90
∘
{\displaystyle -90^{\circ }<y<90^{\circ }}
arkokotangentea
y
=
arccot
(
x
)
{\displaystyle y=\operatorname {arccot}(x)}
x = cot (y )
zenbaki errealak
0
<
y
<
π
{\displaystyle 0<y<\pi }
0
∘
<
y
<
180
∘
{\displaystyle 0^{\circ }<y<180^{\circ }}
arkosekantea
y
=
arcsec
(
x
)
{\displaystyle y=\operatorname {arcsec}(x)}
x = sec (y )
|
x
|
≥
1
{\displaystyle {\left\vert x\right\vert }\geq 1}
0
≤
y
<
π
2
edo
π
2
<
y
≤
π
{\displaystyle 0\leq y<{\frac {\pi }{2}}{\text{ edo }}{\frac {\pi }{2}}<y\leq \pi }
0
∘
≤
y
<
90
∘
edo
90
∘
<
y
≤
180
∘
{\displaystyle 0^{\circ }\leq y<90^{\circ }{\text{ edo }}90^{\circ }<y\leq 180^{\circ }}
arkokosekantea
y
=
arccsc
(
x
)
{\displaystyle y=\operatorname {arccsc}(x)}
x = csc (y )
|
x
|
≥
1
{\displaystyle {\left\vert x\right\vert }\geq 1}
−
π
2
≤
y
<
0
edo
0
<
y
≤
π
2
{\displaystyle -{\frac {\pi }{2}}\leq y<0{\text{ edo }}0<y\leq {\frac {\pi }{2}}}
−
90
∘
≤
y
<
0
∘
edo
0
∘
<
y
≤
90
∘
{\displaystyle -90^{\circ }\leq y<0^{\circ }{\text{ edo }}0^{\circ }<y\leq 90^{\circ }}
Oharra: Zenbait autorek arkusekantearen ibilbidea
(
0
≤
y
<
π
2
or
π
≤
y
<
3
π
2
)
{\textstyle (0\leq y<{\frac {\pi }{2}}{\text{ or }}\pi \leq y<{\frac {3\pi }{2}})}
bezala definitzen dute, tangente funtzioa ez baita negatiboa tarte honetan. Honek kalkulu batzuk sendoagoak egiten ditu. Adibidez, ibilbide hori erabiliz,
tg
(
arcsec
(
x
)
)
=
x
2
−
1
{\displaystyle \operatorname {tg} (\operatorname {arcsec}(x))={\sqrt {x^{2}-1}}}
; eta
(
0
≤
y
<
π
2
or
π
2
<
y
≤
π
)
{\textstyle (0\leq y<{\frac {\pi }{2}}{\text{ or }}{\frac {\pi }{2}}<y\leq \pi )}
ibilbidearekin, ordea,
tg
(
arcsec
(
x
)
)
=
±
x
2
−
1
{\displaystyle \operatorname {tg} (\operatorname {arcsec}(x))=\pm {\sqrt {x^{2}-1}}}
idatzi egin beharko genuke, tangentea positiboa baita
0
≤
y
<
π
2
{\textstyle 0\leq y<{\frac {\pi }{2}}}
-n baina negatiboa
π
2
<
y
≤
π
{\textstyle {\frac {\pi }{2}}<y\leq \pi }
-n. Antzera, autore batzuk arkukosekantearen ibilbidea
(
−
π
<
y
≤
−
π
2
{\textstyle (-\pi <y\leq -{\frac {\pi }{2}}}
eta
0
<
y
≤
π
2
)
{\textstyle 0<y\leq {\frac {\pi }{2}})}
hartzen dute.
x
{\displaystyle x}
zenbaki konplexua izan badaiteke,
y
{\displaystyle y}
-ren ibilbide mugatua zati errealari soilik aplikatzen zaio.
Izena
Ikurra
Eremua
Irudia
Alderantzizko funtzioa
Eremua
Balio nagusien ibilbidea
sine
sin
{\displaystyle \sin }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
[
−
1
,
1
]
{\displaystyle [-1,1]}
arcsin
{\displaystyle \arcsin }
:
{\displaystyle :}
[
−
1
,
1
]
{\displaystyle [-1,1]}
→
{\displaystyle \to }
[
−
π
2
,
π
2
]
{\displaystyle \left[-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right]}
cosine
cos
{\displaystyle \cos }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
[
−
1
,
1
]
{\displaystyle [-1,1]}
arccos
{\displaystyle \arccos }
:
{\displaystyle :}
[
−
1
,
1
]
{\displaystyle [-1,1]}
→
{\displaystyle \to }
[
0
,
π
]
{\displaystyle [0,\pi ]}
tangent
tg
{\displaystyle \operatorname {tg} }
:
{\displaystyle :}
π
Z
+
(
−
π
2
,
π
2
)
{\displaystyle \pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
→
{\displaystyle \to }
R
{\displaystyle \mathbb {R} }
arctg
{\displaystyle \operatorname {arctg} }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
(
−
π
2
,
π
2
)
{\displaystyle \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
cotangent
cot
{\displaystyle \cot }
:
{\displaystyle :}
π
Z
+
(
0
,
π
)
{\displaystyle \pi \mathbb {Z} +(0,\pi )}
→
{\displaystyle \to }
R
{\displaystyle \mathbb {R} }
arccot
{\displaystyle \operatorname {arccot} }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
(
0
,
π
)
{\displaystyle (0,\pi )}
secant
sec
{\displaystyle \sec }
:
{\displaystyle :}
π
Z
+
(
−
π
2
,
π
2
)
{\displaystyle \pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
→
{\displaystyle \to }
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
arcsec
{\displaystyle \operatorname {arcsec} }
:
{\displaystyle :}
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
→
{\displaystyle \to }
[
0
,
π
]
∖
{
π
2
}
{\displaystyle [\,0,\;\pi \,]\;\;\;\setminus \left\{{\tfrac {\pi }{2}}\right\}}
cosecant
csc
{\displaystyle \csc }
:
{\displaystyle :}
π
Z
+
(
0
,
π
)
{\displaystyle \pi \mathbb {Z} +(0,\pi )}
→
{\displaystyle \to }
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
arccsc
{\displaystyle \operatorname {arccsc} }
:
{\displaystyle :}
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
→
{\displaystyle \to }
[
−
π
2
,
π
2
]
∖
{
0
}
{\displaystyle \left[-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right]\setminus \{0\}}
R
=
(
−
∞
,
∞
)
{\displaystyle \mathbb {R} =(-\infty ,\infty )}
ikurrak zenbaki erreal guztien multzoa adierazten du, eta
Z
=
{
…
,
−
2
,
−
1
,
0
,
1
,
2
,
…
}
{\displaystyle \mathbb {Z} =\{\ldots ,\,-2,\,-1,\,0,\,1,\,2,\,\ldots \}}
-k, zenbaki oso guztiena. Antzera,
π
{\displaystyle \pi }
zenbakiaren multiplo guztien multzoa (hots, pi oso batez biderkatuta) honela adierazten da:
π
Z
:=
{
π
n
:
n
∈
Z
}
=
{
…
,
−
2
π
,
−
π
,
0
,
π
,
2
π
,
…
}
.
{\displaystyle \pi \mathbb {Z} ~:=~\{\pi n\;:\;n\in \mathbb {Z} \}~=~\{\ldots ,\,-2\pi ,\,-\pi ,\,0,\,\pi ,\,2\pi ,\,\ldots \}.}
∖
{\displaystyle \,\setminus \,}
ikurrak multzo kendura esan nahi du; hau da, adibidez,
R
∖
(
−
1
,
1
)
=
(
−
∞
,
−
1
]
∪
[
1
,
∞
)
{\displaystyle \mathbb {R} \setminus (-1,1)=(-\infty ,-1]\cup [1,\infty )}
adierazpenak
R
{\displaystyle \mathbb {R} }
(hau da, zenbaki errealak) multzoan dauden baina
(
−
1
,
1
)
{\displaystyle (-1,1)}
tartean EZ dauden zenbakien multzoa da.
Minkowskiren batura adierazpena erabili da ere. Goian,
π
Z
+
(
0
,
π
)
{\textstyle \pi \mathbb {Z} +(0,\pi )}
eta
π
Z
+
(
−
π
2
,
π
2
)
{\displaystyle \pi \mathbb {Z} +{\bigl (}{-{\tfrac {\pi }{2}}},{\tfrac {\pi }{2}}{\bigr )}}
erabiltzen da
cot
,
csc
,
tg
,
eta
sec
{\displaystyle \cot ,\csc ,\operatorname {tg} ,{\text{ eta }}\sec }
-ren eremuak azaltzeko:
Kotangentearen (
cot
{\displaystyle \cot }
) eta kosekantearen (
csc
{\displaystyle \csc }
) eremuak : Biak berdinak dira.
sin
θ
≠
0
{\displaystyle \sin \theta \neq 0}
betetzen duten
θ
{\displaystyle \theta }
angelu guztien multzoa dira; hau da,
π
n
{\displaystyle \pi n}
bezala adieraz ez daitekeen,
n
{\displaystyle n}
zenbaki oso bat izanda, zenbaki errealen multzoa dira.
π
Z
+
(
0
,
π
)
=
⋯
∪
(
−
2
π
,
−
π
)
∪
(
−
π
,
0
)
∪
(
0
,
π
)
∪
(
π
,
2
π
)
∪
⋯
=
R
∖
π
Z
{\displaystyle {\begin{aligned}\pi \mathbb {Z} +(0,\pi )&=\cdots \cup (-2\pi ,-\pi )\cup (-\pi ,0)\cup (0,\pi )\cup (\pi ,2\pi )\cup \cdots \\&=\mathbb {R} \setminus \pi \mathbb {Z} \end{aligned}}}
Tangentearen (
tg
{\displaystyle \operatorname {tg} }
) eta sekantearen (
sec
{\displaystyle \sec }
) eremuak : Biak berdinak dira.
cos
θ
≠
0
{\displaystyle \cos \theta \neq 0}
betetzen duten
θ
{\displaystyle \theta }
angelu guztien multzoa dira; hau da,
π
2
+
π
n
{\displaystyle {\tfrac {\pi }{2}}+\pi n}
bezala adieraz ez daitekeen,
n
{\displaystyle n}
zenbaki oso bat izanda, zenbaki errealen multzoa dira.
π
Z
+
(
−
π
2
,
π
2
)
=
⋯
∪
(
−
3
π
2
,
−
π
2
)
∪
(
−
π
2
,
π
2
)
∪
(
π
2
,
3
π
2
)
∪
⋯
=
R
∖
(
π
2
+
π
Z
)
{\displaystyle {\begin{aligned}\pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)&=\cdots \cup {\bigl (}{-{\tfrac {3\pi }{2}}},{-{\tfrac {\pi }{2}}}{\bigr )}\cup {\bigl (}{-{\tfrac {\pi }{2}}},{\tfrac {\pi }{2}}{\bigr )}\cup {\bigl (}{\tfrac {\pi }{2}},{\tfrac {3\pi }{2}}{\bigr )}\cup \cdots \\&=\mathbb {R} \setminus \left({\tfrac {\pi }{2}}+\pi \mathbb {Z} \right)\\\end{aligned}}}
Oinarrizko ekuazio trigonometrikoen emaitza
aldatu
Funtzio trigonometriko bakoitza periodikoa da balioaren zati errealean, eta bere balio guztiak bi aldiz zeharkatzen ditu
2
π
{\displaystyle 2\pi }
luzerakotarte bakoitzean.
Sinu eta kosekantearen periodoa
2
π
k
−
π
2
{\textstyle 2\pi k-{\frac {\pi }{2}}}
n hasten da (non
k
{\displaystyle k}
zenbaki oso bat den),
2
π
k
+
π
2
{\textstyle 2\pi k+{\frac {\pi }{2}}}
n amaitu, eta gero alderantzizko ibilbidea egiten dute
2
π
k
+
π
2
{\textstyle 2\pi k+{\frac {\pi }{2}}}
tik
2
π
k
+
3
π
2
{\displaystyle 2\pi k+{\frac {3\pi }{2}}}
ra.
Kosinu eta sekantearen periodoa
2
π
k
{\textstyle 2\pi k}
n hasten da,
2
π
k
+
π
{\textstyle 2\pi k+\pi }
n amaitu, eta gero alderantzizko ibilbidea egiten dute
2
π
k
+
π
{\displaystyle 2\pi k+\pi }
tik
2
π
k
+
2
π
{\displaystyle 2\pi k+2\pi }
ra.
Tangentearen periodoa
2
π
k
−
π
2
{\textstyle 2\pi k-{\frac {\pi }{2}}}
tik
2
π
k
+
π
2
{\textstyle 2\pi k+{\frac {\pi }{2}}}
ra doa; eta gero, bere periodoa
π
{\displaystyle \pi }
besterik ez denez, berdina errepikatzen du
2
π
k
+
π
2
{\textstyle 2\pi k+{\frac {\pi }{2}}}
tik
2
π
k
+
3
π
2
{\textstyle 2\pi k+{\frac {3\pi }{2}}}
ra. Antzera, kotangenteak periodoa
2
π
k
{\displaystyle 2\pi k}
n hasten du eta
2
π
k
+
π
{\displaystyle 2\pi k+\pi }
n amaitzen du, eta berdina egiten du
2
π
k
+
π
{\displaystyle 2\pi k+\pi }
tik
2
π
k
+
2
π
{\displaystyle 2\pi k+2\pi }
ra.
Periodikotasun hori alderantzizkoen orokortzeetan ikusten da, non
k
{\displaystyle k}
zenbaki oso bat da.
Hurrengo taulan, funtzio trigonometriko estandarrak dituzten ekuazioak ebazteko bere alderantzizkoak nola erabil daitezkeen erakusten da. Taula osoan,
θ
,
{\displaystyle \theta ,}
r
,
{\displaystyle r,}
s
,
{\displaystyle s,}
x
,
{\displaystyle x,}
eta
y
{\displaystyle y}
ren emandako balio guztiak eremu egokian daudela asumitu dugu, guztiak ondo definituta egon daitezen.Kontuan izan "
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batentzat" "
k
{\displaystyle k}
zenbaki oso batentzat" esateko beste modu bat dela.
⟺
{\displaystyle \,\iff \,}
ikurrak berdintasun logikoa adierazten du.
A
⟺
B
{\displaystyle A\iff B}
adierazpenak A eta B egia direla adli berean, edo A eta B gezurra direla esan nahi du. A ezin da gertatu b gertatu barik, eta aldrebes. Berez, adierazpen horrek "A baldin eta soilik baldin B" esan nahi du, eta A gertatzeko B gertatzea beharrezkoa eta nahikoa dela adierazten du.
Ekuazioa
Baldin eta soilik baldin
Konponbidea
Irtenbide modu zabaldua
non:..
sin
θ
=
y
{\displaystyle \sin \theta =y}
<span about="#mwt510" class="mwe-math-element" data-mw="{"name":"math","attrs":{},"body":{"extsrc":"\\iff"}}" id="mwATc" typeof="mw:Extension/math"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">⟺</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \iff }</annotation>
</semantics>
</math></span><img alt="\iff" aria-hidden="true" class="mwe-math-fallback-image-inline" data-cx="{"adapted":false}" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff942842a50b24e7585cc42c5b50c34650e3aa99" style="vertical-align: -0.338ex; width:5.607ex; height:1.843ex;"></span>
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
{\displaystyle (-1)^{k}}
arcsin
(
y
)
{\displaystyle \arcsin(y)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
gutxi batzuk
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
⟺
{\displaystyle \iff }
edo
θ
=
arcsin
(
y
)
+
2
π
h
{\displaystyle \theta =\;\;\;\,\arcsin(y)+2\pi h}
θ
=
−
arcsin
(
y
)
+
2
π
h
+
π
{\displaystyle \theta =-\arcsin(y)+2\pi h+\pi }
gutxi batzuk
h
∈
Z
{\displaystyle h\in \mathbb {Z} }
csc
θ
=
r
{\displaystyle \csc \theta =r}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
{\displaystyle (-1)^{k}}
arccsc
(
r
)
{\displaystyle \operatorname {arccsc}(r)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
gutxi batzuk
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
⟺
{\displaystyle \iff }
edo
θ
=
arccsc
(
y
)
+
2
π
h
{\displaystyle \theta =\;\;\;\,\operatorname {arccsc}(y)+2\pi h}
θ
=
−
arccsc
(
y
)
+
2
π
h
+
π
{\displaystyle \theta =-\operatorname {arccsc}(y)+2\pi h+\pi }
gutxi batzuk
h
∈
Z
{\displaystyle h\in \mathbb {Z} }
bitartean
cos
θ
=
x
{\displaystyle \cos \theta =x}
θ
≥
0
{\displaystyle \theta \geq 0}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
{\displaystyle (-1)^{k}}
arccos
(
x
)
{\displaystyle \arccos(x)}
+
{\displaystyle +}
2
{\displaystyle 2}
π
⌊
k
+
1
2
⌋
{\displaystyle \pi \left\lfloor {\frac {k+1}{2}}\right\rfloor }
askerako
k
{\displaystyle k}
π
{\displaystyle \pi }
θ
{\displaystyle \theta }
(
k
+
1
)
{\displaystyle (k+1)}
π
{\displaystyle \pi }
k
∈
N
{\displaystyle k\in \mathbb {N} }
⟺
{\displaystyle \iff }
edo
θ
=
arccos
(
y
)
+
2
π
h
{\displaystyle \theta =\;\;\;\,\arccos(y)+2\pi h}
θ
=
−
arccos
(
y
)
+
2
π
h
{\displaystyle \theta =-\arccos(y)+2\pi h}
gutxi batzuk
h
∈
Z
{\displaystyle h\in \mathbb {Z} }
bitartean
cos
θ
=
x
{\displaystyle \cos \theta =x}
θ
≤
0
{\displaystyle \theta \leq 0}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
−
1
{\displaystyle (-1)^{k-1}}
arccos
(
x
)
{\displaystyle \arccos(x)}
−
{\displaystyle -}
2
{\displaystyle 2}
π
⌊
|
k
−
1
|
2
⌋
{\displaystyle \pi \left\lfloor {\frac {|k-1|}{2}}\right\rfloor }
Hau da:
(
k
−
1
)
{\displaystyle (k-1)}
π
{\displaystyle \pi }
θ
{\displaystyle \theta }
k
{\displaystyle k}
π
{\displaystyle \pi }
k
∈
0
+
Z
−
{\displaystyle k\in 0+Z-}
⟺
{\displaystyle \iff }
edo
θ
=
arccos
(
y
)
+
2
π
h
{\displaystyle \theta =\;\;\;\,\arccos(y)+2\pi h}
θ
=
−
arccos
(
y
)
+
2
π
h
{\displaystyle \theta =-\arccos(y)+2\pi h}
gutxi batzuk
h
∈
Z
{\displaystyle h\in \mathbb {Z} }
cos
θ
=
x
{\displaystyle \cos \theta =x}
+ -rentzat
θ
≥
0
{\displaystyle \theta \geq 0}
θ
≤
0
{\displaystyle \theta \leq 0}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm }
(
−
1
)
k
{\displaystyle (-1)^{k}}
arccos
(
x
)
{\displaystyle \arccos(x)}
±
{\displaystyle \pm }
2
π
⌊
k
+
1
2
⌋
{\displaystyle 2\pi \left\lfloor {\frac {k+1}{2}}\right\rfloor }
“’’’’’ denean, k= denean
k
{\displaystyle k}
π
{\displaystyle \pi }
θ
{\displaystyle \theta }
(
k
+
1
)
{\displaystyle (k+1)}
π
{\displaystyle \pi }
k
∈
N
{\displaystyle k\in \mathbb {N} }
⌊
{\displaystyle \lfloor }
⌋
{\displaystyle \rfloor }
⟺
{\displaystyle \iff }
edo
θ
=
arccos
(
y
)
+
2
π
h
{\displaystyle \theta =\;\;\;\,\arccos(y)+2\pi h}
θ
=
−
arccos
(
y
)
+
2
π
h
{\displaystyle \theta =-\arccos(y)+2\pi h}
gutxi batzuk
h
∈
Z
{\displaystyle h\in \mathbb {Z} }
sec
θ
=
r
{\displaystyle \sec \theta =r}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm \,}
arcsec
(
r
)
{\displaystyle \operatorname {arcsec}(r)}
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
gutxi batzuk
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
⟺
{\displaystyle \iff }
edo
θ
=
arcsec
(
y
)
+
2
π
h
{\displaystyle \theta =\;\;\;\,\operatorname {arcsec}(y)+2\pi h}
θ
=
−
arcsec
(
y
)
+
2
π
h
{\displaystyle \theta =-\operatorname {arcsec}(y)+2\pi h}
gutxi batzuk
h
∈
Z
{\displaystyle h\in \mathbb {Z} }
tg
θ
=
s
{\displaystyle \operatorname {tg} \theta =s}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
arctg
(
s
)
{\displaystyle \operatorname {arctg} (s)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
gutxi batzuk
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
cot
θ
=
r
{\displaystyle \cot \theta =r}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =\,}
arccot
(
r
)
{\displaystyle \operatorname {arccot}(r)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
gutxi batzuk
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
Adibidez,
cos
θ
=
−
1
{\displaystyle \cos \theta =-1}
bada, orduan
θ
=
π
+
2
π
k
=
−
π
+
2
π
(
1
+
k
)
{\displaystyle \theta =\pi +2\pi k=-\pi +2\pi (1+k)}
betetzen da
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batentzat. Aldiz,
sin
θ
=
±
1
{\displaystyle \sin \theta =\pm 1}
bada, orduan
θ
=
π
2
+
π
k
=
−
π
2
+
π
(
k
+
1
)
{\textstyle \theta ={\frac {\pi }{2}}+\pi k=-{\frac {\pi }{2}}+\pi (k+1)}
betetzen da
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
bateren batentzat.
k
{\displaystyle k}
bikoitia izango da
sin
θ
=
1
{\displaystyle \sin \theta =1}
kasuan, eta bakoitia
sin
θ
=
−
1
{\displaystyle \sin \theta =-1}
bada. Gainera,
sec
θ
=
−
1
{\displaystyle \sec \theta =-1}
eta
csc
θ
=
±
1
{\displaystyle \csc \theta =\pm 1}
ekuazioek
cos
θ
=
−
1
{\displaystyle \cos \theta =-1}
eta
sin
θ
=
±
1
{\displaystyle \sin \theta =\pm 1}
ekuazioen emaitza berdinak dituzte, hurrenez hurren. Goian agertzen diren beste kasu guztietan, hau da, guztiak
sin
{\displaystyle \sin }
/
csc
θ
=
±
1
{\displaystyle \csc \theta =\pm 1}
eta
cos
{\displaystyle \cos }
/
sec
θ
=
−
1
{\displaystyle \sec \theta =-1}
izan ezik,
θ
{\displaystyle \theta }
k besterik ez du zehazten
k
{\displaystyle k}
zenbaki osoa (
r
,
s
,
x
,
{\displaystyle r,s,x,}
eta
y
{\displaystyle y}
finkoak izanda).
Plus/minus
±
{\displaystyle \pm }
ikurraren azalpen eta adibide zehaztua:
cos
θ
=
x
{\displaystyle \cos \theta =x}
eta
sec
θ
=
x
{\displaystyle \sec \theta =x}
ekuazioen emaitzak plus/minus ikurra erabiltzen dute. Lehenaren kasuan, ematen diguten
x
{\displaystyle x}
tarte batean (
−
1
≤
x
≤
1
{\displaystyle -1\leq x\leq 1}
) dago, eta badakigu
θ
{\displaystyle \theta }
ren bat dagoela
cos
θ
=
x
.
{\displaystyle \cos \theta =x.}
betetzen duena. Hori da aurkitu nahi duguna. Emaitza, taularen arabera, hau da:
θ
=
±
arccos
x
+
2
π
k
k
∈
Z
batzuentzat
{\displaystyle \,\theta =\pm \arccos x+2\pi k\,\quad k\in \mathbb {Z} {\text{ batzuentzat}}}
Azken hori honako baieztapen hauetako bat (gutxienez) egia dela esateko modu laburtua da:
k
{\displaystyle k}
zenbaki oso jakin batentzat,
θ
=
arccos
x
+
2
π
k
{\displaystyle \,\theta =\arccos x+2\pi k\,}
edo
k
{\displaystyle k}
zenbaki oso jakin batentzat
θ
=
−
arccos
x
+
2
π
k
{\displaystyle \,\theta =-\arccos x+2\pi k\,}
Lehen aipatu den bezala,
arccos
x
=
π
{\displaystyle \,\arccos x=\pi }
gertatzen bada (definizioz,
x
=
cos
π
=
−
1
{\displaystyle x=\cos \pi =-1}
kasuan besterik ezin da gertatu), goiko bi adierazpenak, (1) eta (2), egiak dira, nahiz eta
k
{\displaystyle k}
zenbaki osoaren balio desberdinekin:
K
{\displaystyle K}
(1) berdintasunaren zenbakia bada (hau da,
K
{\displaystyle K}
horrek
θ
=
π
+
2
π
K
{\displaystyle \theta =\pi +2\pi K}
betetzen duela), orduan (2) berdintasunaren zenbakia
K
+
1
{\displaystyle K+1}
da, zeren eta
θ
=
−
π
+
2
π
(
1
+
K
)
{\displaystyle \theta =-\pi +2\pi (1+K)}
.
Hala ere,
x
≠
−
1
{\displaystyle x\neq -1}
bada,
k
{\displaystyle k}
zenbaki oso bakar eta berdina da,
θ
{\displaystyle \theta }
ren araberakoa:
arccos
x
=
0
{\displaystyle \,\arccos x=0\,}
bada (definizioz,
x
=
cos
0
=
1
{\displaystyle x=\cos 0=1}
denean besterik ez dena gertatzen), orduan
±
arccos
x
=
0
{\displaystyle \,\pm \arccos x=0\,}
gertatzen da,
+
arccos
x
=
+
0
=
0
=
−
0
=
−
arccos
x
{\displaystyle \,+\arccos x=+0=0=-0=-\arccos x}
delako. Hortaz, (1) eta (2) berdinak dira, eta biak egiak.
Bi kasu berezi horiek aztertu ondoren, beste guztiak ikusiko ditugu. Hortaz, hemendik aurrera
arccos
x
≠
0
{\displaystyle \,\arccos x\neq 0\,}
eta
arccos
x
≠
π
{\displaystyle \,\arccos x\neq \pi }
asumituko dugu.
cos
θ
=
x
{\displaystyle \cos \theta =x}
ren emaitza, halere, oraindik honako forma orokor hau da:
θ
=
±
arccos
x
+
2
π
k
=
±
(
π
2
)
+
2
π
(
0
)
=
±
π
2
.
{\displaystyle \theta ~=~\pm \arccos x+2\pi k~=~\pm \left({\frac {\pi }{2}}\right)+2\pi (0)~=~\pm {\frac {\pi }{2}}.}
Lehen bezala, (1) edo (2), baten bat, egia dela esateko beste forma bat da. Oraingoan, halere,
arccos
x
≠
0
{\displaystyle \,\arccos x\neq 0\,}
eta
0
<
arccos
x
<
π
{\displaystyle 0<\arccos x<\pi }
direnez, (1) eta (2) ez dira berdinal, eta bat besterik ez da gertatzen (biak ez). Zein den jakiteko,
θ
{\displaystyle \theta }
ri buruz gehiago jakin behar dugu.
Adibidez, esan
x
=
0
{\displaystyle x=0}
eta
θ
{\displaystyle \theta }
z dakigun guztia
−
π
≤
θ
≤
π
{\displaystyle \,-\pi \leq \theta \leq \pi \,}
dela. Hortaz:
arccos
x
=
arccos
0
=
π
2
{\displaystyle \arccos x=\arccos 0={\frac {\pi }{2}}}
Gainera,
k
=
0
{\displaystyle k=0}
da kasu berezi honetan (bai
+
{\displaystyle \,+\,}
kasuan, bai
−
{\displaystyle \,-\,}
kasuan), eta, beraz,
sin
θ
=
−
sin
(
−
θ
)
=
−
sin
(
π
+
θ
)
=
sin
(
π
−
θ
)
=
−
cos
(
π
2
+
θ
)
=
cos
(
π
2
−
θ
)
=
−
cos
(
−
π
2
−
θ
)
=
cos
(
−
π
2
+
θ
)
=
−
cos
(
3
π
2
−
θ
)
=
−
cos
(
−
3
π
2
+
θ
)
cos
θ
=
cos
(
−
θ
)
=
−
cos
(
π
+
θ
)
=
cos
(
π
−
θ
)
=
sin
(
π
2
+
θ
)
=
sin
(
π
2
−
θ
)
=
−
sin
(
−
π
2
−
θ
)
=
−
sin
(
−
π
2
+
θ
)
=
−
sin
(
3
π
2
−
θ
)
=
sin
(
−
3
π
2
+
θ
)
tg
θ
=
−
tg
(
−
θ
)
=
tg
(
π
+
θ
)
=
−
tg
(
π
−
θ
)
=
−
cot
(
π
2
+
θ
)
=
cot
(
π
2
−
θ
)
=
cot
(
−
π
2
−
θ
)
=
−
cot
(
−
π
2
+
θ
)
=
cot
(
3
π
2
−
θ
)
=
−
cot
(
−
3
π
2
+
θ
)
{\displaystyle {\begin{alignedat}{28}\sin \theta &=-&&\sin(-\theta )&&=-&&\sin(\pi +\theta )&&=&&\sin(\pi -\theta )&&=-&&\cos {\Big (}{\frac {\pi }{2}}+\theta {\Big )}&&=\;&&\cos {\Big (}{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\cos {\Big (}-{\frac {\pi }{2}}-\theta {\Big )}&&=&&\cos {\Big (}-{\frac {\pi }{2}}+\theta {\Big )}&&=-&&\cos {\bigg (}{\frac {3\pi }{2}}-\theta {\bigg )}&&=-&&\cos {\bigg (}-{\frac {3\pi }{2}}+\theta {\bigg )}\\[0.3ex]\cos \theta &=&&\cos(-\theta )&&=-&&\cos(\pi +\theta )&&=&&\cos(\pi -\theta )&&=&&\sin {\Big (}{\frac {\pi }{2}}+\theta {\Big )}&&=&&\sin {\Big (}{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\sin {\Big (}-{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\sin {\Big (}-{\frac {\pi }{2}}+\theta {\Big )}&&=-&&\sin {\bigg (}{\frac {3\pi }{2}}-\theta {\bigg )}&&=&&\sin {\bigg (}-{\frac {3\pi }{2}}+\theta {\bigg )}\\[0.3ex]\operatorname {tg} \theta &=-&&\operatorname {tg} (-\theta )&&=&&\operatorname {tg} (\pi +\theta )&&=-&&\operatorname {tg} (\pi -\theta )&&=-&&\cot {\Big (}{\frac {\pi }{2}}+\theta {\Big )}&&=&&\cot {\Big (}{\frac {\pi }{2}}-\theta {\Big )}&&=&&\cot {\Big (}-{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\cot {\Big (}-{\frac {\pi }{2}}+\theta {\Big )}&&=&&\cot {\bigg (}{\frac {3\pi }{2}}-\theta {\bigg )}&&=-&&\cot {\bigg (}-{\frac {3\pi }{2}}+\theta {\bigg )}\\[0.3ex]\end{alignedat}}}
Honek
θ
{\displaystyle \theta }
ren balioa
π
/
2
{\displaystyle \,\pi /2\,}
edo
−
π
/
2
{\displaystyle -\pi /2}
izan daitekela esan nahi du. Ezer gehiago jakin gabe, ezin da baieztatu
θ
{\displaystyle \theta }
horietako zein den. Jakin daitekeen zerbait angelua
x
{\displaystyle x}
ardatzaren gainetik dagoela da (orduan
θ
=
−
π
/
2
{\displaystyle \theta =-\pi /2}
litzateke), edota ardatz berdinaren behetik (beraz,
θ
=
−
π
/
2
{\displaystyle \theta =-\pi /2}
.
Ekuazio transformatzaileak
Aurreko ekuazioak islapen eta aldaketa identitateak erabiliz aldatu egin daitezke :[ 4]
Argudioa:
_
{\displaystyle {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
−
θ
{\displaystyle -\theta }
π
2
±
θ
{\displaystyle {\frac {\pi }{2}}\pm \theta }
π
±
θ
{\displaystyle \pi \pm \theta }
3
π
2
±
θ
{\displaystyle {\frac {3\pi }{2}}\pm \theta }
2
k
π
±
θ
{\displaystyle 2k\pi \pm \theta }
non
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
sin
_
{\displaystyle \sin {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
−
{\displaystyle -}
sin
θ
{\displaystyle \sin \theta }
cos
θ
{\displaystyle \cos \theta }
∓
{\displaystyle \mp }
sin
θ
{\displaystyle \sin \theta }
−
{\displaystyle -}
cos
θ
{\displaystyle \cos \theta }
±
{\displaystyle \pm }
sin
θ
{\displaystyle \sin \theta }
csc
_
{\displaystyle \csc {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
−
{\displaystyle -}
csc
θ
{\displaystyle \csc \theta }
sec
θ
{\displaystyle \sec \theta }
∓
{\displaystyle \mp }
csc
θ
{\displaystyle \csc \theta }
−
{\displaystyle -}
sec
θ
{\displaystyle \sec \theta }
±
{\displaystyle \pm }
csc
θ
{\displaystyle \csc \theta }
cos
_
{\displaystyle \cos {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
cos
θ
{\displaystyle \cos \theta }
∓
{\displaystyle \mp }
sin
θ
{\displaystyle \sin \theta }
−
{\displaystyle -}
cos
θ
{\displaystyle \cos \theta }
±
{\displaystyle \pm }
sin
θ
{\displaystyle \sin \theta }
cos
θ
{\displaystyle \cos \theta }
sec
_
{\displaystyle \sec {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
sec
θ
{\displaystyle \sec \theta }
∓
{\displaystyle \mp }
csc
θ
{\displaystyle \csc \theta }
−
{\displaystyle -}
sec
θ
{\displaystyle \sec \theta }
±
{\displaystyle \pm }
csc
θ
{\displaystyle \csc \theta }
sec
θ
{\displaystyle \sec \theta }
tg
_
{\displaystyle \operatorname {tg} {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
−
{\displaystyle -}
tg
θ
{\displaystyle \operatorname {tg} \theta }
∓
{\displaystyle \mp }
cot
θ
{\displaystyle \cot \theta }
±
{\displaystyle \pm }
tg
θ
{\displaystyle \operatorname {tg} \theta }
∓
{\displaystyle \mp }
cot
θ
{\displaystyle \cot \theta }
±
{\displaystyle \pm }
tg
θ
{\displaystyle \operatorname {tg} \theta }
cot
_
{\displaystyle \cot {\underline {\;~~~~~~~~~~~~~~\;}}}
=
{\displaystyle =}
−
{\displaystyle -}
cot
θ
{\displaystyle \cot \theta }
∓
{\displaystyle \mp }
tg
θ
{\displaystyle \operatorname {tg} \theta }
±
{\displaystyle \pm }
cot
θ
{\displaystyle \cot \theta }
∓
{\displaystyle \mp }
tg
θ
{\displaystyle \operatorname {tg} \theta }
±
{\displaystyle \pm }
cot
θ
{\displaystyle \cot \theta }
Formula horiek hau egia izatea egiten dute, bereziki:
sin
θ
=
−
sin
(
−
θ
)
=
−
sin
(
π
+
θ
)
=
sin
(
π
−
θ
)
=
−
cos
(
π
2
+
θ
)
=
cos
(
π
2
−
θ
)
=
−
cos
(
−
π
2
−
θ
)
=
cos
(
−
π
2
+
θ
)
=
−
cos
(
3
π
2
−
θ
)
=
−
cos
(
−
3
π
2
+
θ
)
cos
θ
=
cos
(
−
θ
)
=
−
cos
(
π
+
θ
)
=
cos
(
π
−
θ
)
=
sin
(
π
2
+
θ
)
=
sin
(
π
2
−
θ
)
=
−
sin
(
−
π
2
−
θ
)
=
−
sin
(
−
π
2
+
θ
)
=
−
sin
(
3
π
2
−
θ
)
=
sin
(
−
3
π
2
+
θ
)
tg
θ
=
−
tg
(
−
θ
)
=
tg
(
π
+
θ
)
=
−
tg
(
π
−
θ
)
=
−
cot
(
π
2
+
θ
)
=
cot
(
π
2
−
θ
)
=
cot
(
−
π
2
−
θ
)
=
−
cot
(
−
π
2
+
θ
)
=
cot
(
3
π
2
−
θ
)
=
−
cot
(
−
3
π
2
+
θ
)
{\displaystyle {\begin{alignedat}{28}\sin \theta &=-&&\sin(-\theta )&&=-&&\sin(\pi +\theta )&&=&&\sin(\pi -\theta )&&=-&&\cos {\Big (}{\frac {\pi }{2}}+\theta {\Big )}&&=\;&&\cos {\Big (}{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\cos {\Big (}-{\frac {\pi }{2}}-\theta {\Big )}&&=&&\cos {\Big (}-{\frac {\pi }{2}}+\theta {\Big )}&&=-&&\cos {\bigg (}{\frac {3\pi }{2}}-\theta {\bigg )}&&=-&&\cos {\bigg (}-{\frac {3\pi }{2}}+\theta {\bigg )}\\[0.3ex]\cos \theta &=&&\cos(-\theta )&&=-&&\cos(\pi +\theta )&&=&&\cos(\pi -\theta )&&=&&\sin {\Big (}{\frac {\pi }{2}}+\theta {\Big )}&&=&&\sin {\Big (}{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\sin {\Big (}-{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\sin {\Big (}-{\frac {\pi }{2}}+\theta {\Big )}&&=-&&\sin {\bigg (}{\frac {3\pi }{2}}-\theta {\bigg )}&&=&&\sin {\bigg (}-{\frac {3\pi }{2}}+\theta {\bigg )}\\[0.3ex]\operatorname {tg} \theta &=-&&\operatorname {tg} (-\theta )&&=&&\operatorname {tg} (\pi +\theta )&&=-&&\operatorname {tg} (\pi -\theta )&&=-&&\cot {\Big (}{\frac {\pi }{2}}+\theta {\Big )}&&=&&\cot {\Big (}{\frac {\pi }{2}}-\theta {\Big )}&&=&&\cot {\Big (}-{\frac {\pi }{2}}-\theta {\Big )}&&=-&&\cot {\Big (}-{\frac {\pi }{2}}+\theta {\Big )}&&=&&\cot {\bigg (}{\frac {3\pi }{2}}-\theta {\bigg )}&&=-&&\cot {\bigg (}-{\frac {3\pi }{2}}+\theta {\bigg )}\\[0.3ex]\end{alignedat}}}
non
sin
↔
csc
,
{\displaystyle \sin \leftrightarrow \csc ,}
cos
↔
sec
{\displaystyle \cos \leftrightarrow \sec }
eta
tg
↔
cot
{\displaystyle \operatorname {tg} \leftrightarrow \cot }
trukatzeak
csc
,
sec
,
eta
cot
{\displaystyle \csc ,\sec ,{\text{ eta }}\cot }
funtzioentzako ekuazioak ematen dizkigun, hurrenez hurren.
Adibidez,
sin
(
π
2
−
θ
)
=
cos
θ
{\textstyle \sin \left({\frac {\pi }{2}}-\theta \right)=\cos \theta }
berdintza erabiliz,
cos
θ
=
x
{\displaystyle \cos \theta =x}
ekuazioa
sin
(
π
2
−
θ
)
=
x
{\textstyle \sin \left({\frac {\pi }{2}}-\theta \right)=x}
bihur daiteke. Horrek
sin
φ
=
x
{\displaystyle \sin \varphi =x}
ren emaitza erabiltzea ahalbidetzen digu (non
φ
:=
π
2
−
θ
{\textstyle \varphi :={\frac {\pi }{2}}-\theta }
); izan ere, emaitza hori
φ
=
(
−
1
)
k
arcsin
(
x
)
+
π
k
,
k
∈
Z
batentzat
{\displaystyle \varphi =(-1)^{k}\arcsin(x)+\pi k,\;k\in \mathbb {Z} {\text{ batentzat }}}
da. Hori hau bihur daiteke:
Txantiloi:EqualOrNegativeIdenticalTrigonometricFunctionsSolutions
Erlazioa
Baldin eta bakarrik baldin
Erantzuna
Asunzioa
Honetarako ere da emaitza:
sin
θ
{\displaystyle \sin \theta }
=
{\displaystyle =}
sin
φ
{\displaystyle \sin \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
(
−
1
)
k
{\displaystyle (-1)^{k}}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
csc
θ
=
csc
φ
{\displaystyle \csc \theta =\csc \varphi }
cos
θ
{\displaystyle \cos \theta }
=
{\displaystyle =}
cos
φ
{\displaystyle \cos \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
±
{\displaystyle \pm \,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
sec
θ
=
sec
φ
{\displaystyle \sec \theta =\sec \varphi }
tg
θ
{\displaystyle \operatorname {tg} \theta }
=
{\displaystyle =}
tg
φ
{\displaystyle \operatorname {tg} \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
cot
θ
=
cot
φ
{\displaystyle \cot \theta =\cot \varphi }
−
sin
θ
{\displaystyle -\sin \theta }
=
{\displaystyle =}
sin
φ
{\displaystyle \sin \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
(
−
1
)
k
+
1
{\displaystyle (-1)^{k+1}}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
−
csc
θ
=
csc
φ
{\displaystyle -\csc \theta =\csc \varphi }
−
cos
θ
{\displaystyle -\cos \theta }
=
{\displaystyle =}
cos
φ
{\displaystyle \cos \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
±
{\displaystyle \pm \,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
+
π
{\displaystyle +\,\;\pi }
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
−
sec
θ
=
sec
φ
{\displaystyle -\sec \theta =\sec \varphi }
−
tg
θ
{\displaystyle -\operatorname {tg} \theta }
=
{\displaystyle =}
tg
φ
{\displaystyle \operatorname {tg} \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
−
{\displaystyle -}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
−
cot
θ
=
cot
φ
{\displaystyle -\cot \theta =\cot \varphi }
|
sin
θ
|
{\displaystyle \left|\sin \theta \right|}
=
{\displaystyle =}
|
sin
φ
|
{\displaystyle \left|\sin \varphi \right|}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
±
{\displaystyle \pm }
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
|
tg
θ
|
=
|
tg
φ
|
|
csc
θ
|
=
|
csc
φ
|
|
sec
θ
|
=
|
sec
φ
|
|
cot
θ
|
=
|
cot
φ
|
{\displaystyle {\begin{aligned}\left|\operatorname {tg} \theta \right|&=\left|\operatorname {tg} \varphi \right|\\\left|\csc \theta \right|&=\left|\csc \varphi \right|\\\left|\sec \theta \right|&=\left|\sec \varphi \right|\\\left|\cot \theta \right|&=\left|\cot \varphi \right|\end{aligned}}}
⇕
|
cos
θ
|
{\displaystyle \left|\cos \theta \right|}
=
{\displaystyle =}
|
cos
φ
|
{\displaystyle \left|\cos \varphi \right|}
π
2
−
θ
=
(
−
1
)
k
arcsin
(
x
)
+
π
k
,
k
∈
Z
batentzat
{\displaystyle {\frac {\pi }{2}}-\theta ~=~(-1)^{k}\arcsin(x)+\pi k,\quad k\in \mathbb {Z} {\text{ batentzat }}}
Honetaz konturatzean lortzen da:
cos
(
arctg
(
x
)
)
=
1
1
+
x
2
=
cos
(
arccos
(
1
1
+
x
2
)
)
{\displaystyle \cos \left(\operatorname {arctg} \left(x\right)\right)={\sqrt {\frac {1}{1+x^{2}}}}=\cos \left(\arccos \left({\sqrt {\frac {1}{1+x^{2}}}}\right)\right)}
θ
=
(
−
1
)
h
+
1
arcsin
(
x
)
+
π
h
+
π
2
,
h
∈
Z
batzuentzat
{\displaystyle \theta ~=~(-1)^{h+1}\arcsin(x)+\pi h+{\frac {\pi }{2}}\quad ,h\in \mathbb {Z} {\text{ batzuentzat }}}
arcsin
x
=
π
2
−
arccos
x
{\displaystyle \;\arcsin x={\frac {\pi }{2}}-\arccos x\;}
ordezkapena aurreko formularen eskuinaldea
arccos
x
{\displaystyle \arccos x}
ren arabera adierazteko baliogarria izan daiteke,
arcsin
x
{\displaystyle \;\arcsin x}
ren ordez.
Funtzio trigonometrikoen berdintasunak
aldatu
Taula honek bi angelu
θ
{\displaystyle \theta }
eta
φ
{\displaystyle \varphi }
erlazionatutak egon behar direla adierazten du, bere balio trigonometrikoak elkarren berdinak edo aurkakoak badira.
Equation
Baldin eta bakarrik baldin
Emaitza
non...
Hau ere bai betetzen du
sin
θ
{\displaystyle \sin \theta }
=
{\displaystyle =}
sin
φ
{\displaystyle \sin \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
(
−
1
)
k
{\displaystyle (-1)^{k}}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
csc
θ
=
csc
φ
{\displaystyle \csc \theta =\csc \varphi }
cos
θ
{\displaystyle \cos \theta }
=
{\displaystyle =}
cos
φ
{\displaystyle \cos \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
±
{\displaystyle \pm \,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
sec
θ
=
sec
φ
{\displaystyle \sec \theta =\sec \varphi }
tg
θ
{\displaystyle \operatorname {tg} \theta }
=
{\displaystyle =}
tg
φ
{\displaystyle \operatorname {tg} \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
cot
θ
=
cot
φ
{\displaystyle \cot \theta =\cot \varphi }
−
sin
θ
{\displaystyle -\sin \theta }
=
{\displaystyle =}
sin
φ
{\displaystyle \sin \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
(
−
1
)
k
+
1
{\displaystyle (-1)^{k+1}}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
−
csc
θ
=
csc
φ
{\displaystyle -\csc \theta =\csc \varphi }
−
cos
θ
{\displaystyle -\cos \theta }
=
{\displaystyle =}
cos
φ
{\displaystyle \cos \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
±
{\displaystyle \pm \,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
+
π
{\displaystyle +\,\;\pi }
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
−
sec
θ
=
sec
φ
{\displaystyle -\sec \theta =\sec \varphi }
−
tg
θ
{\displaystyle -\operatorname {tg} \theta }
=
{\displaystyle =}
tg
φ
{\displaystyle \operatorname {tg} \varphi }
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
−
{\displaystyle -}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
−
cot
θ
=
cot
φ
{\displaystyle -\cot \theta =\cot \varphi }
|
sin
θ
|
{\displaystyle \left|\sin \theta \right|}
=
{\displaystyle =}
|
sin
φ
|
{\displaystyle \left|\sin \varphi \right|}
⟺
{\displaystyle \iff }
θ
=
{\displaystyle \theta =}
±
{\displaystyle \pm }
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
batzuentzat
|
tg
θ
|
=
|
tg
φ
|
|
csc
θ
|
=
|
csc
φ
|
|
sec
θ
|
=
|
sec
φ
|
|
cot
θ
|
=
|
cot
φ
|
{\displaystyle {\begin{aligned}\left|\operatorname {tg} \theta \right|&=\left|\operatorname {tg} \varphi \right|\\\left|\csc \theta \right|&=\left|\csc \varphi \right|\\\left|\sec \theta \right|&=\left|\sec \varphi \right|\\\left|\cot \theta \right|&=\left|\cot \varphi \right|\end{aligned}}}
⇕
|
cos
θ
|
{\displaystyle \left|\cos \theta \right|}
=
{\displaystyle =}
|
cos
φ
|
{\displaystyle \left|\cos \varphi \right|}
Alderantzizko funtzio trigonometriko eta funtzio trigonometriko estandarren arteko erlazioak
aldatu
Hona hemen alderantzizko funtzio trigonometrikoak, funtzio trigonometrikoen arabera. Erlazio hauek lortzeko modu azkar bat eskuin-triangelu baten geometria da: 1 luzera duen alde batekin eta
x
{\displaystyle x}
luzerako beste alde batekin, Pitagorasen teorema eta erlazio trigonometrikoen definizioak erraz aplika daitezke. Deribazio algebraiko hutsak, ordea, luzeagoak dira.
Esan beharra da, arkusekante eta arkukosekantean, diagramak
x
{\displaystyle x}
positiboa dela hartzen du; beraz, emaitza zuzendu egin behar dela balio absolutuak eta signu funtzioa (sgn) erabiliz.
θ
{\displaystyle \theta }
sin
(
θ
)
{\displaystyle \sin(\theta )}
cos
(
θ
)
{\displaystyle \cos(\theta )}
tg
(
θ
)
{\displaystyle \operatorname {tg} (\theta )}
Grafikoki
arcsin
(
x
)
{\displaystyle \arcsin(x)}
sin
(
arcsin
(
x
)
)
=
x
{\displaystyle \sin(\arcsin(x))=x}
cos
(
arcsin
(
x
)
)
=
1
−
x
2
{\displaystyle \cos(\arcsin(x))={\sqrt {1-x^{2}}}}
tg
(
arcsin
(
x
)
)
=
x
1
−
x
2
{\displaystyle \operatorname {tg} (\arcsin(x))={\frac {x}{\sqrt {1-x^{2}}}}}
arccos
(
x
)
{\displaystyle \arccos(x)}
sin
(
arccos
(
x
)
)
=
1
−
x
2
{\displaystyle \sin(\arccos(x))={\sqrt {1-x^{2}}}}
cos
(
arccos
(
x
)
)
=
x
{\displaystyle \cos(\arccos(x))=x}
tg
(
arccos
(
x
)
)
=
1
−
x
2
x
{\displaystyle \operatorname {tg} (\arccos(x))={\frac {\sqrt {1-x^{2}}}{x}}}
arctg
(
x
)
{\displaystyle \operatorname {arctg} (x)}
sin
(
arctg
(
x
)
)
=
x
1
+
x
2
{\displaystyle \sin(\operatorname {arctg} (x))={\frac {x}{\sqrt {1+x^{2}}}}}
cos
(
arctg
(
x
)
)
=
1
1
+
x
2
{\displaystyle \cos(\operatorname {arctg} (x))={\frac {1}{\sqrt {1+x^{2}}}}}
tg
(
arctg
(
x
)
)
=
x
{\displaystyle \operatorname {tg} (\operatorname {arctg} (x))=x}
arccot
(
x
)
{\displaystyle \operatorname {arccot}(x)}
sin
(
arccot
(
x
)
)
=
1
1
+
x
2
{\displaystyle \sin(\operatorname {arccot}(x))={\frac {1}{\sqrt {1+x^{2}}}}}
cos
(
arccot
(
x
)
)
=
x
1
+
x
2
{\displaystyle \cos(\operatorname {arccot}(x))={\frac {x}{\sqrt {1+x^{2}}}}}
tg
(
arccot
(
x
)
)
=
1
x
{\displaystyle \operatorname {tg} (\operatorname {arccot}(x))={\frac {1}{x}}}
arcsec
(
x
)
{\displaystyle \operatorname {arcsec}(x)}
sin
(
arcsec
(
x
)
)
=
x
2
−
1
|
x
|
{\displaystyle \sin(\operatorname {arcsec}(x))={\frac {\sqrt {x^{2}-1}}{|x|}}}
cos
(
arcsec
(
x
)
)
=
1
x
{\displaystyle \cos(\operatorname {arcsec}(x))={\frac {1}{x}}}
tg
(
arcsec
(
x
)
)
=
sgn
(
x
)
x
2
−
1
{\displaystyle \operatorname {tg} (\operatorname {arcsec}(x))=\operatorname {sgn}(x){\sqrt {x^{2}-1}}}
arccsc
(
x
)
{\displaystyle \operatorname {arccsc}(x)}
sin
(
arccsc
(
x
)
)
=
1
x
{\displaystyle \sin(\operatorname {arccsc}(x))={\frac {1}{x}}}
cos
(
arccsc
(
x
)
)
=
x
2
−
1
|
x
|
{\displaystyle \cos(\operatorname {arccsc}(x))={\frac {\sqrt {x^{2}-1}}{|x|}}}
tg
(
arccsc
(
x
)
)
=
sgn
(
x
)
x
2
−
1
{\displaystyle \operatorname {tg} (\operatorname {arccsc}(x))={\frac {\operatorname {sgn}(x)}{\sqrt {x^{2}-1}}}}
Alderantzizko funtzio trigonometrikoen elkarren arteko erlazioak
aldatu
Arctan(x) eta arccot(x) funtzioen ohiko balio nagusiak, plano kartesiarrean.
Arcsec(x) eta arccsc(x) funtzioen balio nagusiak, plano kartesiarrean.
Arcsec(x) eta arccsc(x) funtzioen balio nagusiak, plano kartesiarrean.
Angelu osagarriak:
arccos
(
x
)
=
π
2
−
arcsin
(
x
)
arccot
(
x
)
=
π
2
−
arctg
(
x
)
arccsc
(
x
)
=
π
2
−
arcsec
(
x
)
{\displaystyle {\begin{aligned}\arccos(x)&={\frac {\pi }{2}}-\arcsin(x)\\[0.5em]\operatorname {arccot}(x)&={\frac {\pi }{2}}-\operatorname {arctg} (x)\\[0.5em]\operatorname {arccsc}(x)&={\frac {\pi }{2}}-\operatorname {arcsec}(x)\end{aligned}}}
Argudio negatiboak:
arcsin
(
−
x
)
=
−
arcsin
(
x
)
arccos
(
−
x
)
=
π
−
arccos
(
x
)
arctg
(
−
x
)
=
−
arctg
(
x
)
arccot
(
−
x
)
=
π
−
arccot
(
x
)
arcsec
(
−
x
)
=
π
−
arcsec
(
x
)
arccsc
(
−
x
)
=
−
arccsc
(
x
)
{\displaystyle {\begin{aligned}\arcsin(-x)&=-\arcsin(x)\\\arccos(-x)&=\pi -\arccos(x)\\\operatorname {arctg} (-x)&=-\operatorname {arctg} (x)\\\operatorname {arccot}(-x)&=\pi -\operatorname {arccot}(x)\\\operatorname {arcsec}(-x)&=\pi -\operatorname {arcsec}(x)\\\operatorname {arccsc}(-x)&=-\operatorname {arccsc}(x)\end{aligned}}}
Alderantzizko argudioak:
arccos
(
1
x
)
=
arcsec
(
x
)
arcsin
(
1
x
)
=
arccsc
(
x
)
arctg
(
1
x
)
=
π
2
−
arctg
(
x
)
=
arccot
(
x
)
,
if
x
>
0
arctg
(
1
x
)
=
−
π
2
−
arctg
(
x
)
=
arccot
(
x
)
−
π
,
if
x
<
0
arccot
(
1
x
)
=
π
2
−
arccot
(
x
)
=
arctg
(
x
)
,
if
x
>
0
arccot
(
1
x
)
=
3
π
2
−
arccot
(
x
)
=
π
+
arctg
(
x
)
,
if
x
<
0
arcsec
(
1
x
)
=
arccos
(
x
)
arccsc
(
1
x
)
=
arcsin
(
x
)
{\displaystyle {\begin{aligned}\arccos \left({\frac {1}{x}}\right)&=\operatorname {arcsec}(x)\\[0.3em]\arcsin \left({\frac {1}{x}}\right)&=\operatorname {arccsc}(x)\\[0.3em]\operatorname {arctg} \left({\frac {1}{x}}\right)&={\frac {\pi }{2}}-\operatorname {arctg} (x)=\operatorname {arccot}(x)\,,{\text{ if }}x>0\\[0.3em]\operatorname {arctg} \left({\frac {1}{x}}\right)&=-{\frac {\pi }{2}}-\operatorname {arctg} (x)=\operatorname {arccot}(x)-\pi \,,{\text{ if }}x<0\\[0.3em]\operatorname {arccot} \left({\frac {1}{x}}\right)&={\frac {\pi }{2}}-\operatorname {arccot}(x)=\operatorname {arctg} (x)\,,{\text{ if }}x>0\\[0.3em]\operatorname {arccot} \left({\frac {1}{x}}\right)&={\frac {3\pi }{2}}-\operatorname {arccot}(x)=\pi +\operatorname {arctg} (x)\,,{\text{ if }}x<0\\[0.3em]\operatorname {arcsec} \left({\frac {1}{x}}\right)&=\arccos(x)\\[0.3em]\operatorname {arccsc} \left({\frac {1}{x}}\right)&=\arcsin(x)\end{aligned}}}
Gure taula trigonometrikoan sinuak besterik ez baditugu:
arccos
(
x
)
=
arcsin
(
1
−
x
2
)
,
baldin
0
≤
x
≤
1
, eta handik lor dezakegu
arccos
(
1
−
x
2
1
+
x
2
)
=
arcsin
(
2
x
1
+
x
2
)
,
baldin
0
≤
x
≤
1
arcsin
(
1
−
x
2
)
=
π
2
−
sgn
(
x
)
arcsin
(
x
)
arccos
(
x
)
=
1
2
arccos
(
2
x
2
−
1
)
,
baldin
0
≤
x
≤
1
arcsin
(
x
)
=
1
2
arccos
(
1
−
2
x
2
)
,
baldin
0
≤
x
≤
1
arcsin
(
x
)
=
arctg
(
x
1
−
x
2
)
arccos
(
x
)
=
arctg
(
1
−
x
2
x
)
arctg
(
x
)
=
arcsin
(
x
1
+
x
2
)
arccot
(
x
)
=
arccos
(
x
1
+
x
2
)
{\displaystyle {\begin{aligned}\arccos(x)&=\arcsin \left({\sqrt {1-x^{2}}}\right)\,,{\text{ baldin }}0\leq x\leq 1{\text{ , eta handik lor dezakegu }}\\\arccos &\left({\frac {1-x^{2}}{1+x^{2}}}\right)=\arcsin \left({\frac {2x}{1+x^{2}}}\right)\,,{\text{ baldin }}0\leq x\leq 1\\\arcsin &\left({\sqrt {1-x^{2}}}\right)={\frac {\pi }{2}}-\operatorname {sgn}(x)\arcsin(x)\\\arccos(x)&={\frac {1}{2}}\arccos \left(2x^{2}-1\right)\,,{\text{ baldin }}0\leq x\leq 1\\\arcsin(x)&={\frac {1}{2}}\arccos \left(1-2x^{2}\right)\,,{\text{ baldin }}0\leq x\leq 1\\\arcsin(x)&=\operatorname {arctg} \left({\frac {x}{\sqrt {1-x^{2}}}}\right)\\\arccos(x)&=\operatorname {arctg} \left({\frac {\sqrt {1-x^{2}}}{x}}\right)\\\operatorname {arctg} (x)&=\arcsin \left({\frac {x}{\sqrt {1+x^{2}}}}\right)\\\operatorname {arccot}(x)&=\arccos \left({\frac {x}{\sqrt {1+x^{2}}}}\right)\end{aligned}}}
Zenbaki konplexu baten erro karratua erabiltzean, zati erreal positiboa duen erroa aukeratzen dugu (edo zati irudikari positiboa, karratua erreal negatiboa bazen).
Aurreko formuletatik zuzenean lor daitekeen forma erabilgarri bat hau da:
.
arctg
(
x
)
=
arccos
(
1
1
+
x
2
)
,
baldin
x
≥
0
{\displaystyle \operatorname {arctg} \left(x\right)=\arccos \left({\sqrt {\frac {1}{1+x^{2}}}}\right)\,,{\text{ baldin }}x\geq 0}
Erraz lor daiteke azken hau baldin badakigu:
cos
(
arctg
(
x
)
)
=
1
1
+
x
2
=
cos
(
arccos
(
1
1
+
x
2
)
)
{\displaystyle \cos \left(\operatorname {arctg} \left(x\right)\right)={\sqrt {\frac {1}{1+x^{2}}}}=\cos \left(\arccos \left({\sqrt {\frac {1}{1+x^{2}}}}\right)\right)}
Angelu erdiaren formulatik,
tg
(
θ
2
)
=
sin
(
θ
)
1
+
cos
(
θ
)
{\displaystyle \operatorname {tg} \left({\tfrac {\theta }{2}}\right)={\tfrac {\sin(\theta )}{1+\cos(\theta )}}}
, abiatuta, hau lortzen dugu:
arcsin
(
x
)
=
2
arctg
(
x
1
+
1
−
x
2
)
arccos
(
x
)
=
2
arctg
(
1
−
x
2
1
+
x
)
,
baldin
−
1
<
x
≤
1
arctg
(
x
)
=
2
arctg
(
x
1
+
1
+
x
2
)
{\displaystyle {\begin{aligned}\arcsin(x)&=2\operatorname {arctg} \left({\frac {x}{1+{\sqrt {1-x^{2}}}}}\right)\\[0.5em]\arccos(x)&=2\operatorname {arctg} \left({\frac {\sqrt {1-x^{2}}}{1+x}}\right)\,,{\text{ baldin }}-1<x\leq 1\\[0.5em]\operatorname {arctg} (x)&=2\operatorname {arctg} \left({\frac {x}{1+{\sqrt {1+x^{2}}}}}\right)\end{aligned}}}
arctg
(
u
)
±
arctg
(
v
)
=
arctg
(
u
±
v
1
∓
u
v
)
(
mod
π
)
,
u
v
≠
1
.
{\displaystyle \operatorname {arctg} (u)\pm \operatorname {arctg} (v)=\operatorname {arctg} \left({\frac {u\pm v}{1\mp uv}}\right){\pmod {\pi }}\,,\quad uv\neq 1\,.}
Hau lortzeko, batuketaren tangentearen formulan
tg
(
α
±
β
)
=
tg
(
α
)
±
tg
(
β
)
1
∓
tg
(
α
)
tg
(
β
)
,
{\displaystyle \operatorname {tg} (\alpha \pm \beta )={\frac {\operatorname {tg} (\alpha )\pm \operatorname {tg} (\beta )}{1\mp \operatorname {tg} (\alpha )\operatorname {tg} (\beta )}}\,,}
α
=
arctg
(
u
)
,
β
=
arctg
(
v
)
{\displaystyle \alpha =\operatorname {arctg} (u)\,,\quad \beta =\operatorname {arctg} (v)}
bi ordezkatze hauek ezar daitezke.